64 resultados para scaffold

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of prior learning on new learning is highlighted by the case of Dean, a Year 8 student who developed his own method to find the sum of the interior angles of a polygon without knowing why his method worked. Enriched transcripts and visual displays of the cognitive, social (Dreyfus, Hershkowitz, & Schwarz, 2001) and affective elements (Williams, 2002) of Dean's interrupted abstraction process informed the identification of factors that inhibited Dean's constructing process. It was found Dean possessed an empirical, not theoretical, generalization (Davydov, 1990) about sums of interior angles of triangles that was an inadequate cognitive artifact for constructing the new more complex theoretical generalization. The study suggests use of tasks designed with the opportunity develop assumed knowledge in conjunction with new concepts.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic perforations of the eardrum or tympanic membrane represent a significant source of morbidity worldwide. Myringoplasty is the operative repair of a perforated tympanic membrane and is a procedure commonly performed by otolaryngologists. Its purpose is to close the tympanic membrane, improve hearing and limit patient susceptibility to middle ear infections. The success rates of the different surgical techniques used to perform a myringoplasty, and the optimal graft materials to achieve complete closure and restore hearing, vary significantly in the literature. A number of autologous tissues, homografts and synthetic materials are described as graft options. With the advent and development of tissue engineering in the last decade, a number of biomaterials have been studied and attempts have been made to mimic biological functions with these materials. Fibroin, a core structural protein in silk from silkworms, has been widely studied with biomedical applications in mind. Several cell types, including keratinocytes, have grown on silk biomaterials, and scaffolds manufactured from silk have successfully been used in wound healing and for tissue engineering purposes. This review focuses on the current available grafts for myringoplasty and their limitations, and examines the biomechanical properties of silk, assessing the potential benefits of a silk fibroin scaffold as a novel device for use as a graft in myringoplasty surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium (Ti) and Ti alloys are important scaffold materials for bone tissue engineering. In the present study, a new type of porous Ti alloy scaffold with biocompatible alloying elements, that is, niobium (Nb) and zirconium (Zr), was prepared by a space-holder sintering method. This porous TiNbZr scaffold with a porosity of 69% exhibits a mechanical strength of 67MPa and an elastic modulus of 3.9GPa, resembling the mechanical properties of cortical bone. To improve the osteoconductivity, a calcium phosphate (Ca/P) coating was applied to the surface of the scaffold using a biomimetic method. The biocompatibility of the porous TiNbZr alloy scaffold before and after the biomimetic modification was assessed using the SaOS2 osteoblast–like cells. Cell culture results indicated that the porous TiNbZr scaffold is more favorable for cell adhesion and proliferation than its solid counterpart. By applying a Ca/P coating, the cell proliferation rate on the Ca/P-coated scaffold was significantly improved. The results suggest that high-strength porous TiNbZr scaffolds with an appropriate osteoconductive coating could be potentially used for bone tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surgical treatment to repair chronic tympanic membrane perforations is myringoplasty. Although multiple autologous grafts, allografts, and synthetic graft materials have been used over the years, no single graft material is superior for repairing all perforation types. Recently, the remarkable properties of silk fibroin protein have been studied, with biomedical and tissue engineering applications in mind, across a number of medical and surgical disciplines. The present study examines the use of silk fibroin for its potential suitability as an alternative graft in myringoplasty surgery by investigating the growth and proliferation of human tympanic membrane keratinocytes on a silk fibroin scaffold in vitro. Light microscopy, immunofluorescent staining, and confocal imaging all reveal promising preliminary results. The biocompatibility, transparency, stability, high tensile strength, and biodegradability of fibroin make this biomaterial an attractive option to study for this utility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the rigid norbornane scaffold, a series of low-molecular-weight organogelators has been synthesised and evaluated. Three separate compounds (16, 19 and 20) were identified as organogelators in three aromatic organic solvents (PhMe, anisole and o-xylene). The formation of fibrillar assemblies at nanometre level was confirmed using atomic force microscopy and transmission electron microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical properties of porous magnesium with the porosity of 35–55% and the pore size of about 70–400 μm are investigated by compressive tests focusing on the effects of the porosity and pore size on the Young's modulus and strength. Results indicated that the Young's modulus and peak stress increase with decreasing porosity and pore size. The mechanical properties of the porous magnesium were in a range of those of cancellous bone. Therefore, it is suggested that the porous magnesium is one of promising scaffold materials for hard tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have exploited the concept of multivalency in the context of DNA recognition, using novel chemistry to synthesize a new type of bis-intercalator with unusual sequence-selectivity. Bis-intercalation has been observed previously, but design principles for de novo construction of such molecules are not known. Our compounds feature two aromatic moieties projecting from a rigid, polynorbornane-based scaffold. The length and character of the backbone as well as the identity of the intercalators were varied, resulting in mono- or divalent recognition of the double helix with varying affinity. Our lead compound proved to be a moderately sequence-selective bis-intercalator with an unwinding angle of 27 and a binding constant of about 8 M. 9-Aminoacridine rings were preferred over acridine carboxamides or naphthalimides, and a rigid [3]-polynorbornane scaffold was superior to a [5]-polynorbornane. The flexibility of the linker connecting the rings to the scaffold, although less influential, could affect the strength and character of the DNA binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article addresses the importance of giving greater pedagogical attention to writing for publication in higher education. It recognizes that, while doctoral research is a major source of new knowledge production in universities, most doctoral students do not receive adequate mentoring or structural support to publish from their research, with poor results. Data from a case study of graduates in science and education are examined to show how the different disciplinary and pedagogic practices of each discourse community impact on student publication. It is argued that co-authorship with supervisors is a significant pedagogic practice that can enhance the robustness and know-how of emergent scholars as well as their publication output. There is a need, however, to rethink co-authorship more explicitly as a pedagogic practice, and create more deliberate structures in subject disciplines to scaffold doctoral publication - as it is these structures that influence whether graduates publish as informed professionals in their chosen fields of practice.