38 resultados para loss of function mutation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity residing within its RING finger domain. We have previously reported that c-Cbl–deficient mice exhibit elevated energy expenditure, reduced adiposity, and improved insulin action. In this study, we examined mice expressing c-Cbl protein with a loss-of-function mutation within the RING finger domain (c-CblA/– mice). Compared with control animals, c-CblA/– mice display a phenotype that includes reduced adiposity, despite greater food intake; reduced circulating insulin, leptin, and triglyceride levels; and improved glucose tolerance. c-CblA/– mice also display elevated oxygen consumption (13%) and are protected against high-fat diet–induced obesity and insulin resistance. Unlike c-CblA/– mice, mice expressing a mutant c-Cbl with the phosphatidylinositol (PI) 3-kinase binding domain ablated (c-CblF/F mice) exhibited an insulin sensitivity, body composition, and energy expenditure similar to that of wild-type animals. These results indicate that c-Cbl ubiquitin ligase activity, but not c-Cbl–dependent activation of PI 3-kinase, plays a key role in the regulation of whole-body energy metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a key regulator of cell proliferation, differentiation, and apoptosis and is one of the drug targets of anticancer therapy. Recently, a single point mutation (D294G) in PKCα has been found in pituitary and thyroid tumors with more invasive phenotype. Although the PKCα-D294G mutant is implicated in the progression of endocrine tumors, no apparent biochemical/cell biological abnormalities underlying tumorigenesis with this mutant have been found. We report here that the PKCα-D294G mutant is unable to bind to cellular membranes tightly despite the fact that it translocates to the membrane as efficiently as the wild-type PKCα upon treatment of phorbol ester. The impaired membrane binding is associated with this mutant's inability to transduce several antitumorigenic signals as it fails to mediate phorbol ester–stimulated translocation of myristoylated alanine–rich protein kinase C substrate (MARCKS), to activate mitogen-activated protein kinase and to augment melatonin-stimulated neurite outgrowth. Thus, the PKCα-D294G is a loss-of-function mutation. We propose that the wild-type PKCα may play important antitumorigenic roles in the progression of endocrine tumors. Therefore, developing selective activators instead of inhibitors of PKCα might provide effective pharmacological interventions for the treatment of certain endocrine tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE/INTRODUCTION: We have examined the immune status of elderly patients who underwent surgery for a hip fracture, an injury associated with poor postoperative outcomes, to identify specific immune defects. METHODS: In a cohort observational study, 16 patients undergoing surgery for hip fractures had immune function evaluation prior to surgery, and then at 3 and 7 days postoperatively, using flow cytometry for phenotype and for monocyte and granulocyte phagocytic function and respiratory burst. Serum samples were stored and batch analyzed using a human cytokine 25-plex panel. RESULTS: We report significant loss of innate immune function, related specifically to reduced granulocyte numbers by day 7 (P < .0001, flow cytometry; P < .05 white blood cells), and although granulocyte ability to take up opsonized Escherichia coli was increased (P < .05), the ability of those cells to generate a respiratory burst was reduced at days 3 and 7 (P < .05). Monocyte respiratory burst was also significantly reduced (P < .05). Serum cytokine levels indicated very poor T-cell function. CONCLUSION: We have demonstrated that the antimicrobial immune response is profoundly reduced after surgery in elderly patients with hip fractures. The effect was sustained up to 7 days postoperatively, identifying these patients as particularly vulnerable to bacterial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae RAD1 and human XPF genes encode a subunit of a nucleotide excision repair endonuclease that also is implicated in some forms of homologous recombination. An Arabidopsis thaliana gene (AtRAD1) encoding the orthologous plant protein has been identified recently. Here we report the isolation of three structurally distinct AtRAD1 cDNAs from A. thaliana leaf tissue RNA. One of the isolates (AtRAD1-1) corresponds to the cDNA previously shown to encode the full-length AtRad1 protein, whereas the other two (AtRAD1-2, AtRAD1-3) differ slightly in size due to variations at the 5′ end of exon 6 or the 3′ end of exon 7, respectively. The sequence differences argue that these cDNAs were probably templated by mRNAs generated via alternative splicing. Diagnostic polymerase chain reaction pointed to the presence of the AtRAD1-1 and AtRAD1-2 but not AtRAD1-3 transcripts in bud and root tissue, and to a fourth transcript (AtRAD1-4), having both alterations identified in AtRAD1-2 and AtRAD1-3, in root tissue. However, the low frequency of detection of AtRAD1-3 and AtRAD1-4 makes the significance of these tissue-specific patterns unclear. The predicted AtRad1-2, AtRad1-3 and AtRad1-4 proteins lack part of the region likely required for endonuclease complex formation. Expression of AtRAD1-2 and AtRAD1-3 in a yeast rad1 mutant did not complement the sensitivity to ultraviolet radiation or the recombination defect associated with the rad1 mutation. These results suggest that alternative splicing may modulate the levels of functional AtRad1 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and B-type NP (BNP) are hormones involved in homeostatic control of body fluid and cardiovascular regulation. Both ANP and BNP have been cloned from the heart of mammals, amphibians, and teleost fishes, while an additional cardiac peptide, ventricular NP, has been found in selected species of teleost fish. However, in chicken, BNP is the primary cardiac peptide identified thus far. In contrast, the types of NP/s present in the reptilian heart are unknown, representing a considerable gap in our understanding of NP evolution. In the present study, we cloned and sequenced a BNP cDNA from the atria of representative species of reptile, including crocodile, lizard, snake, and tortoise. In addition, we cloned BNP from the pigeon atria. The reptilian and pigeon BNP cDNAs had ATTTA repeats in the 3′ untranslated region, as observed in all vertebrate BNP mRNAs. A high sequence homology was evident when comparing reptile and pigeon preproBNP with the previously identified chicken preproBNP. In particular, the predicted mature BNP-29 was identical between crocodile, tortoise, and chicken, with pigeon having a single amino acid substitution; lizard and snake BNP had seven and nine substitutions, respectively. Furthermore, an ANP cDNA could only be cloned from the tortoise atria. Since ANP was not isolated from the heart of any non-chelonian reptile and appears to be absent in birds, we propose that the ANP gene has been lost after branching of the turtles in the amniote line. This data provides new avenues for research on NP function in reptiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Globally, urbanization is one of the most widespread, intense and ecologically destructive forms of landscape transformation, and it is often concentrated in coastal areas. Theoretically, species losses attributable to urbanization are predicted not to alter overall ecosystem function if functional redundancy (i.e. replacement of function by alternative species) compensates for such losses. Here, we test this expectation by measuring how coastal urbanization affects scavenger guilds on sandy beaches and whether changes in guild composition result either in an overall loss of scavenging efficiency, or in functional compensation under alternative guild structures, maintaining net ecosystem functioning. Location: Fourteen beaches along the east coast of Australia with variable levels of urbanization. Methods: Scavenging communities and rates of carrion removal were determined using motion-triggered cameras at the beach-dune interface. Results: A substantial shift in the community structure of vertebrate scavengers was associated with gradients in urbanization. Iconic and functionally important raptors declined precipitously in abundance on urban beaches. Importantly, other vertebrates usually associated with urban settings (e.g. dogs, foxes, corvids) did not functionally replace raptors. In areas where < 15% of the abutting land had been developed into urban areas, carcass removal by scavengers was often complete, but always > 70%. Conversely, on beaches bordering coastal cities with < 40% of natural vegetation remaining, two-thirds of fish carcasses remained uneaten by scavengers. Raptors removed 70-100% of all deployed fish carcasses from beaches with < 8% urban land cover, but this number dropped significantly with greater levels of urbanization and was not compensated by other scavenger species in urban settings. Main conclusions: There is limited functional redundancy in vertebrate scavenger communities of sandy beach ecosystems, which impacts the system's capacity to mitigate the ecological consequences of detrimental landscape transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colour and luminance-contrast thresholds were measured in the presence of dynamic Random Luminance-contrast Masking (RLM) in individuals who had had past diagnoses of optic neuritis (ON) some of whom have progressed to a diagnosis of multiple sclerosis (MS). To explore the spatio-temporal selectivity of chromatic and luminance losses in MS/ON, thresholds were measured using three different sizes and modulation rates of the RLM displays: small checks modulating slowly, medium-sized checks with moderate modulation and large checks modulating rapidly. The colour of the chromatic stimuli used were specified in a cone-excitation space to measure relative impairments in red–green and blue–yellow chromatic channels. These observers showed chromatic thresholds along the L/(L + M) axis that were higher than those along the S-cone axis for all display sizes/modulation rates and both red-green and blue-yellow colour thresholds were higher than luminance-contrast thresholds. The principal change in thresholds with spatio-temporal changes in the display was a reduction in thresholds for L/(L + M) and S-cones with increasing check size and modulation rate. However, luminance contrast thresholds did not change with display size/rate. These results are consistent with MS/ON selectively affecting processing in colour pathways rather than in the magnocellular pathway, and that within the colour pathways neurones with opposed L- and M-cone inputs are more damaged than colour-opponent neurons with input from S-cones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global trend toward more intensive forms of agriculture is changing the nature of matrix habitat in agricultural areas. Removal of components of matrix habitat can affect native biota at the paddock and the landscape scale, particularly where intensification occurs over large areas. We identify the loss of paddock trees due to the proliferation of centre pivot irrigation in dryland farming areas as a potentially serious threat to the remnant biota of these areas. We used a region of south-eastern Australia as a case study to quantify land use change from grazing and dryland cropping to centre pivot irrigation over a 23-year period. We also estimated rates of paddock tree loss in 5 representative landscapes within the region over the same period. The total area affected by centre pivots increased from 0 ha in 1980 to nearly 9000 ha by 2005. Pivots were more likely to be established in areas which had originally been plains savannah and woodlands containing buloke (Allocasuarina luehmannii), a food source for an endangered bird. On average, 42% of paddock buloke trees present in 1982 were lost by 2005. In the two landscapes containing several centre pivots, the loss was 54% and 70%. This accelerated loss of important components of matrix habitat is likely to result in species declines and local extinctions. We recommend that measures to alleviate the likely negative impacts of matrix habitat loss on native biota be considered as part of regional planning strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Janus kinase 2 (Jak2) transduces signals from hematopoietic cytokines, and a gain-of-function mutation (Jak2617V>F) is associated with myeloproliferative diseases, particularly polycythemia vera. In this study, we examined the role of jak2a in zebrafish embryos in knock-down and overexpression studies using morpholinos (MOs) targeting the 5' untranslated region (UTR) (jak2aUTR-MO) and splice-site junction (jak2aSS-MO) of jak2a, a Jak inhibitor AG490 and a constitutive-active form of jak2a (jak2aca). At 18 and 24 hours after fertilization (hpf), jak2a is expressed predominantly in the intermediate cell mass (ICM; site of primitive hematopoiesis) of wild-type and chordin morphant embryos (characterized by expansion of ICM). Both jak2a MOs and AG490 reduced gata1+ (erythroid) cells in Tg(gata1:GFP) embryos, signal transducer and activation of transcription 5 (stat5) phosphorylation, and gene expression associated with early progenitors (scl and lmo2) and erythroid (gata1, he1 and ßhe1) and myeloid (spi1 [early] and mpo [late]) lineages. The chordin morphant is associated with increased stat5 phosphorylation, and both jak2a MOs and treatment with AG490 significantly ameliorated ICM expansion and hematopoietic gene up-regulation in these embryos. Injection of plasmid encoding jak2aca significantly increased erythropoiesis and expression of gata1, he1 and ßhe1, spi1, mpo, and l-plastin. In conclusion, zebrafish jak2a is involved in primitive hematopoiesis under normal and deregulated conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria is a major human health problem and is responsible for over 2 million deaths per year. It is caused by a number of species of the genus Plasmodium, and Plasmodium falciparum is the causative agent of the most lethal form. Consequently, the development of a vaccine against this parasite is a priority. There are a number of stages of the parasite life cycle that are being targeted for the development of vaccines. Important candidate antigens include proteins on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to manipulate the genome of Plasmodium species has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. This has provided new information on the role of merozoite antigens in erythrocyte invasion and also allows new approaches to address their potential as vaccine candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most lethal form of malaria in humans and is responsible for over two million deaths per year. The development of a vaccine against this parasite is an urgent priority and potential protein targets include those on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to transfect P. falciparum has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. In this review, we describe the use of this technology to examine the role of merozoite antigens in erythrocyte invasion and to address their potential as vaccine candidates.