12 resultados para koala

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world was captivated when footage of a badly burnt koala drinking water from a Victorian firefighter's bottle was uploaded to You Tube in February 2009. When the story of "Sam the Koala" was adopted by the mainstream media, recombinant themes were used to construct her story - from heroism and patriotism to villain vs victim and romance. While scholars have examined the changing role of the journalist in a converged world and the rise of "soft" news, this paper focuses on the way journalists create disjointed narratives around You Tube footage to extend a story s lifespan. We call these new narrative forms "fractured fairy tale news" to describe this emerging phenomenon of convergence culture. Further, we suggest that news media exploit the YouTube community for their own commercial gain and conclude that the fractured fairy tale style is a poor vehicle for the future of news.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world was captivated when footage of a badly burnt koala taking water from a Victorian Country Fire Authority volunteer was taken with a mobile phone and broadcast to the world on YouTube in February 2009. When the story of ‘Sam the Koala’ was subsequently adopted by traditional broadcast and print media, recombinant themes were used to construct her story – from heroism, patriotism, villain v victim - even romance was incorporated to entertain and create audience appeal. This paper explores how ‘Sam the Koala’ became a defining news story in the coverage of Victoria’s Black Saturday bushfires and examines the power of narrative when cross pollination occurs between new and traditional media in the production of news. It is argued that Sam’s story is evidence of journalists adopting new approaches to storytelling in a bid to retain their legitimacy as the authoritative voice of news and information in an increasingly technologically driven society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The koala is a widely distributed Australian marsupial with regional populations that are in rapid decline, are stable or have increased in size. This study examined whether it is possible to use expert elicitation to estimate abundance and trends of populations of this species. Diverse opinions exist about estimates of abundance and, consequently, the status of populations. Location: Eastern and south-eastern Australia Methods: Using a structured, four-step question format, a panel of 15 experts estimated population sizes of koalas and changes in those sizes for bioregions within four states. They provided their lowest plausible estimate, highest plausible estimate, best estimate and their degree of confidence that the true values were contained within these upper and lower estimates. We derived estimates of the mean population size of koalas and associated uncertainties for each bioregion and state. Results: On the basis of estimates of mean population sizes for each bioregion and state, we estimated that the total number of koalas for Australia is 329,000 (range 144,000-605,000) with an estimated average decline of 24% over the past three generations and the next three generations. Estimated percentage of loss in Queensland, New South Wales, Victoria and South Australia was 53%, 26%, 14% and 3%, respectively. Main conclusions: It was not necessary to achieve high levels of certainty or consensus among experts before making informed estimates. A quantitative, scientific method for deriving estimates of koala populations and trends was possible, in the absence of empirical data on abundances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of cameras to monitor wildlife is commonplace; however, little is known of the effectiveness of different camera technologies for the detection of mammals. We compared the detection success of three different camera systems, a passive infrared (IR) system, an active IR and a constant video camera, alongside a trapping grid of Elliott and cage traps to determine their effectiveness at detecting mammals at multiple locations in the Otways National Park, Victoria, Australia (n = 160 events; 40 ± 23 [SD] events per night). Species detected and detection rates differed between methods (χ2 = 57.95, df = 2, p < 0.0001). Only house mice (Mus musculus) were detected by camera and traditional trapping techniques. Camera systems alone detected foxes (Vulpes vulpes) and a koala (Phascolarctos cinereus), while traditional traps captured bush rats (Rattus fuscipes), agile antechinus (Antechinus agilis) and a brush-tailed possum (Trichosurus vulpecula) which were not detected by the camera systems. Assuming that the video camera detected all mammals at the camera trap, the passive IR system detected almost all mammals detected by the video and it detected significantly more species than the active IR system. The choice of method will ultimately depend on the species of interest, logistics and the study site, and may substantially influence the results of a study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear strips of vegetation set within a less-hospitable matrix are common features of landscapes throughout the world. Depending on location, form and function, these linear landscape elements include hedgerows, fencerows, shelterbelts, roadside or streamside strips and wildlife corridors. In many anthropogenically-modified landscapes, linear strips are important components for conservation because they provide a large proportion of the remaining wooded or shrubby habitat for fauna. They may also function to provide connectivity across the landscape. In some districts, the linear strips form an interconnected network of habitat. The spatial configuration of remnant habitat (size, shape and arrangement) may influence habitat suitability, and hence survival, of many species of plant and animal in modified landscapes. Near Euroa in south-eastern Australia, the clearing and fragmentation of temperate woodlands for agriculture has been extensive and, at present, less than 5% tree cover remains, most of which (83%) occurs as linear strips along roads and streams. The remainder of the woodland occurs as relatively small patches and single isolated trees scattered across the landscape. As an assemblage, arboreal marsupials are woodland dependent and vary in their sensitivity to habitat loss and fragmentation. This thesis focusses on determining the conservation status of arboreal marsupials in the linear network and understanding how they utilise the landscape mosaic. Specifically, the topics examined in this thesis are: (1) the composition of the arboreal marsupial assemblage in linear and non-linear woodland remnants; (2) the status and habitat preferences of species of arboreal marsupial within linear remnants; and (3) the ecology of a population of the Squirrel Glider Petaurus norfolcensis in the linear network, focusing on population dynamics, spatial organisation, and use of den trees. The arboreal marsupial fauna in the linear network was diverse, and comprised seven out of eight species known to occur in the district. The species detected within the strips were P. norfolcensis, the Sugar Glider Petaurus breviceps, Common Brushtail Possum Trichosums vulpecula, Common Ringtail Possum Pseudocheirus peregrinus, Brush-tailed Phascogale Phascogale tapoatafa, Koala Phascolarctos cinereus and Yellow-footed Antechinus Antechinus flavipes. The species not detected was the Feathertail Glider Acrabates pygmaeus. Survey sites in linear remnants (strips of woodland along roads and streams) supported a similar richness and density of arboreal mammals to sites in non-linear remnants (large patches or continuous tracts of woodland nearby). Furthermore, the combined abundance of all species of arboreal marsupials was significantly greater in sites in the linear remnants than in the non-linear remnants. This initial phase of the study provided no evidence that linear woodland remnants support a degraded or impoverished arboreal marsupial fauna in comparison with the nonlinear remnants surveyed. Intensive trapping of arboreal marsupials within a 15 km linear network between February 1997 and June 1998 showed that all species of arboreal marsupial (except A. pygmaeus) were present within the linear strips. Further analyses related trap-based abundance estimates to measures of habitat quality and landscape structure. Width of the linear habitat was significantly positively correlated with the combined abundance of all arboreal marsupials, as well as with the abundance of P. norfolcensis and T. vulpecula. The abundance of T. vulpecula was also significantly positively correlated with variation in overstorey species composition, Acacia density and the number of hollow-bearing trees. The abundance of P. norfolcensis was positively correlated with Acacia density and canopy width, and negatively correlated with distance to the nearest intersection with another linear remnant. No significant variables were identified to explain the abundance of P. tapoatafa, and there were insufficient captures of the remaining species to investigate habitat preferences. Petaurus norfolcensis were resident within the linear network and their density (0.95 -1.54 ha-1) was equal to the maximum densities recorded for this species in continuous forest elsewhere in south-eastern Australia. Rates of reproduction were also similar to those in continuous forest, with births occurring between May and December, a mean natality rate of 1.9, and a mean litter size of 1.7. Sex ratios never differed significantly from parity. Overall, the population dynamics of P. norfolcensis were comparable with published results for the species in contiguous forest, clearly suggesting that the linear remnants currently support a self-sustaining, viable population. Fifty-one P. norfolcensis were fitted with radio transmitters and tracked intermittently between December 1997 and November 1998. Home ranges were small (1.3 - 2.8 ha), narrow (20 - 40 m) and elongated (322 - 839 m). Home ranges were mostly confined to the linear remnants, although 80% of gliders also utilised small clumps of adjacent woodland within farm paddocks for foraging or denning. Home range size was significantly larger at intersections between two or more linear remnants than within straight sections of linear remnants. Intersections appeared to be important sites for social interaction because the overlap of home ranges of members of adjacent social groups was significantly greater at intersections than straight sections. Intersections provided the only opportunity for members of three or more social groups to interact, while still maintaining their territories. The 51 gliders were radiotracked to 143 different hollow-bearing trees on 2081 occasions. On average, gliders used 5.3 den trees during the study (range 1-15), and changed den trees every 4.9 days. The number of den trees used by each glider is likely to be conservative because the cumulative number of den trees continued to increase over the full duration of the study. When gliders shifted between den trees, the mean distance between consecutive den sites was 247 m. Den trees were located throughout a glider's home range, thereby reducing the need to return to a central den site and potentially minimising energy expenditure. Dens were usually located in large trees (mean diameter 88.5 cm) and were selected significantly more often than expected based on their occurrence within the landscape. The overall conclusion of this thesis is that the linear network I studied provides high quality habitat for resident populations of arboreal marsupials. Important factors influencing the suitability of the linear remnants appear to be the high level of network connectivity, the location on soils of high nutrient status, the high density of large trees and an acacia understorey. In highly fragmented landscapes, linear habitats as part of the remaining woodland mosaic have the potential to be an integral component in the conservation of woodland-dependent fauna. The habitat value of linear strips of vegetation should not be underestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat destruction and fragmentation, interactions with introduced species or the relocation of animals to form new populations for conservation purposes may result in a multiplication of population bottlenecks. Examples are the translocations of koalas to French Island and its derivative Kangaroo Island population, with both populations established as insurance policies against koala extinction. In terms of population size, these conservation programs were success stories. However, the genetic story could be different. We conducted a genetic investigation of French and Kangaroo Island koalas by using 15 microsatellite markers, 11 of which are described here for the first time. The results confirm very low genetic diversity. French Island koalas have 3.8 alleles per locus and Kangaroo Island koalas 2.4. The present study found a 19% incidence of testicular abnormality in kangaroo Island animals. Internal relatedness, an individual inbreeding coefficient, was not significantly different in koalas with testicular abnormalities from that in other males, suggesting the condition is not related to recent inbreeding. It could instead result from an unfortunate selection of founder individuals carrying alleles for testicular abnormalities, followed by a subsequent increase in these alleles’ frequencies through genetic drift and small population-related inefficiency of selection. Given the low diversity and possible high prevalence of deleterious alleles, the genetic viability of the population remains uncertain, despite its exponential growth so far. This stands as a warning to other introductions for conservation reasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproductive characteristics of a wildlife population are typically sensitive to changes in environmental conditions and intrinsic factors. Knowledge of these relationships is critical for understanding population dynamics and effective long-term management of a population. We examined temporal variation in reproductive parameters of an abundant, genetically compromised, and high-density population of koalas (Phascolarctos cinereus) on Kangaroo Island, South Australia, over 3 breeding seasons spanning 9 years: November–May of 1997–1998, 2005–2006, and 2006–2007. Timing of the breeding season was consistent between years, but fecundity, sex ratio of young, and the percentage of independent females (those not accompanying a lactating female) , 6 kg varied. Fecundity was lower than in other island populations, suggesting that the quality and distribution of food resources or inbreeding may be impacting the Kangaroo Island population. We did not test for Chlamydophila (synonym =Chlamydia), and clinical signs of this disease were not reported for any of the koalas in this study. However, historical evidence of Chlamydophila-infected koalas on Kangaroo Island exists, and the potential impact of this disease on fecundity warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The koala (Phascolarctos cinereus), one of the world's most iconic faunal species, was recently listed under Australian government legislation as vulnerable in the northern states of Queensland and New South Wales and in the Australian Capital Territory, but not in the southern states of Victoria and South Australia. This review synthesises empirical evidence of regional koala population trends, their conservation outlook, and associated policy challenges. Population declines are common in the northern half of the koala's range, where habitat loss, hotter droughts, disease, dog attacks and vehicle collisions are the major threats. In contrast, some southern populations are locally overabundant and are now subject to managed declines. The koala presents the problem of managing a wide-ranging species that now primarily occurs in human-modified landscapes, some of which are rapidly urbanising or subject to large-scale agricultural and mining developments. Climate change is a major threat to both northern and southern populations. The implementation of policy to conserve remaining koala habitat and restore degraded habitat is critical to the success of koala conservation strategies, but habitat conservation alone will not resolve the issues of koala conservation. There needs to be concerted effort to reduce the incidence of dog attack and road-related mortality, disease prevalence and severity, and take into account new threats of climate change and mining. Many of the complex conservation and policy challenges identified here have broader significance for other species whose population trends, and the nature of the threatening processes, vary from region to region, and through time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the ability of koalas to respond to changes in their environment is critical for conservation of the species and their habitat. We monitored the behavioural response of koalas to declining food resources in manna gum (Eucalyptus viminalis) woodland at Cape Otway, Victoria, Australia, from September 2011 to November 2013. Over this period, koala population density increased from 10.1 to 18.4 koalas.ha-1. As a result of the high browsing pressure of this population, manna gum canopy condition declined with 71.4% manna gum being completely or highly defoliated in September 2013. Despite declining food resources, radio collared koalas (N = 30) exhibited high fidelity to small ranges (0.4-1.2 ha). When trees became severely defoliated in September 2013, koalas moved relatively short distances from their former ranges (mean predicted change in range centroid = 144 m) and remained in areas of 0.9 to 1.0 ha. This was despite the high connectivity of most manna gum woodland, and close proximity of the study site (< 3 km) to the contiguous mixed forest of the Great Otway National Park. Limited movement had catastrophic consequences for koalas with 71% (15/21) of radio collared koalas dying from starvation or being euthanased due to their poor condition between September and November 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. METHODS: In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). RESULTS: We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and those without infection using qPCR. This analysis revealed that one of these four, CLEC4E, may be upregulated in response to chlamydia infection. CONCLUSION: We have characterised genes of the NKC and LRC in koalas and have discovered evidence that one of these genes may be upregulated in koalas with chlamydia, suggesting that these receptors may play a role in the immune response of koalas to chlamydia infection.