6 resultados para kidney cell

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims For selected individuals with complex Type 1 diabetes, pancreatic islet transplantation (IT) offers the potential of excellent glycaemic controlwithout significant hypoglycaemia, balanced by the need for ongoing systemic immunosuppression. Increasingly, patient-reported outcomes (PROs) are considered alongside biomedical outcomes as a measure of transplant success. PROs in IT have not previously been compared directlywith the closest alternate treatment option, pancreas transplant alone (PTA) or pancreas after kidney (PAK).

Methods We used a Population, Intervention, Comparisons, Outcomes (PICO) strategy to search Scopus and screened 314 references for inclusion.

Results Twelve studies [including PRO assessment of PAK, PTA, islet-after kidney (IAK) and islet transplant alone (ITA); n = 7–205] used a total of nine specified and two unspecified PRO measures. Results were mixed but identified some benefits which remained apparent up to 36 months post-transplant, including improvements in fear of hypoglycaemia, as well as some aspects of diabetes-specific quality of life (QoL) and general health status. Negative outcomes included short-term pain associated with the procedure, immunosuppressant side effects and depressed mood associated with loss of graft function.

Conclusions The mixed resultsmay be attributable to limited sample sizes. Also, some PROmeasures may lack sensitivity to detect actual changes, as they exclude issues and domains of life likely to be important forQoL post-transplantation and when patients may no longer perceive themselves to have diabetes. Thus, the full impact of islet ⁄ pancreas transplantation (alone or after kidney) on QoL is unknown. Furthermore, no studies have assessed patient satisfaction, which may highlight further advantages and disadvantages of transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aim: The toxic milk (tx) mouse is a non-fatal animal model for the metabolic liver disorder, Wilson's disease. The tx mouse has a mutated gene for a copper-transporting protein, causing early copper accumulation in the liver and late accumulation in other tissues. The present study investigated the efficacy of liver cell transplantation (LCT) to correct the tx mouse phenotype.

Methods: Congenic hepatocytes were isolated and intrasplenically transplanted into 3–4-month-old tx mice, which were then placed on various copper-loaded diets to examine its influence on repopulation by transplanted cells. The control animals were age-matched untransplanted tx mice. Liver repopulation was determined by comparisons of restriction fragment length polymorphism ratios (DNA and mRNA), and copper levels were measured by atomic absorption spectroscopy.

Results: Repopulation in recipient tx mice was detected in 11 of 25 animals (44%) at 4 months after LCT. Dietary copper loading (whether given before or after LCT, or both) provided no growth advantage for donor cells, with similar repopulation incidences in all copper treatment groups. Overall, liver copper levels were significantly lower in repopulated animals (538 ± 68 µg/g, n = 11) compared to non-repopulated animals (866 ± 62 µg/g, n = 14) and untreated controls (910 ± 103 µg/g, n = 6; P < 0.05). This effect was also seen in the kidney and spleen. Brain copper levels remained unchanged.

Conclusion: Transplanted liver cells can proliferate and correct a non-fatal metabolic liver disease, with some restoration of hepatic copper homeostasis after 4 months leading to reduced copper levels in the liver and extrahepatic tissues, but not in the brain.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. β-Galactosidase (β-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5–15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotavirus replication occurs in vivo in intestinal epithelial cells. Cell lines fully permissive to rotavirus include kidney epithelial (MA104), colonic (Caco-2) and hepatic (HepG2) types. Previously, it has been shown that cellular integrins α2β1, α4β1 and αXβ2 are involved in rotavirus cell entry. As receptor usage is a major determinant of virus tropism, the levels of cell surface expression of these integrins have now been investigated by flow cytometry on cell lines of human (Caco-2, HepG2, RD, K562) and monkey (MA104, COS-7) origin in relation to cellular susceptibility to infection with monkey and human rotaviruses. Cells supporting any replication of human rotaviruses (RD, HepG2, Caco-2, COS-7 and MA104) expressed α2β1 and (when tested) αXβ2, whereas the non-permissive K562 cells did not express α2β1, α4β1 or αXβ2. Only RD cells expressed α4β1. Although SA11 grew to higher titres in RD, HepG2, Caco-2, COS-7 and MA104 cells, this virus still replicated at a low level in K562 cells. In all cell lines tested, SA11 replicated to higher titres than did human strains, consistent with the ability of SA11 to use sialic acids as alternative receptors. Levels of cell surface α2 integrin correlated with levels of rotavirus growth. The α2 integrin relative linear median fluorescence intensity on K562, RD, COS-7, MA104 and Caco-2 cells correlated linearly with the titre of SA11 produced in these cells at 20 h after infection at a multiplicity of 0·1, and the data best fitted a sigmoidal dose–response curve (r2=1·00, P=0·005). Thus, growth of rotaviruses in these cell lines correlates with their surface expression of α2β1 integrin and is consistent with their expression of αXβ2 and α4β1 integrins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The localization and role of the calcium-sensing receptor (CaSR) along the nephron including the collecting ducts is still open to debate. Methods Using the quantitative, highly sensitive in situ hybridization technique and a double-staining immunohistochemistry technique, we investigated the axial distribution and expression of CaSR along the nephron in mice (C57B/6J) treated for 6 days with acid or alkali diets. Results Under control condition, CaSR was specifically localized in the cortical and medullary thick ascending limb of Henle’s loop (CTAL and MTAL), macula densa (MD), distal convoluted tubule (DCT), and CCD (TALs, MD > DCT, CCD). Along the CCD, CaSR was co-localized with an anion exchanger type 4 (AE4), a marker of the basolateral membrane of type-B intercalated cell (IC-B) in mice. On the contrary, CaSR was not detected either in principal cells (PC) or in type-A intercalated cell (IC-A). CaSR expression levels in IC-B significantly (P < 0.005) decreased when mice were fed NH4Cl (acid) diets and increased when animals were given NaHCO3 (alkali) diets. As expected, cell heights of IC-A and IC-B significantly (P < 0.005) increased in the above experimental conditions. Surprisingly, single infusion (ip) of neomycin, an agonist of CaSR, significantly (P < 0.005) increased urinary Ca excretion without further increasing the hourly urine volume and significantly (P < 0.05) decreased urine pH. Conclusion CaSR, cloned from rat kidney, was localized in the basolateral membrane of IC-B and was more expressed during alkali-loading. Its alkali-sensitive expression may promote urinary alkali secretion for body acid–base balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD). Here, we report that partial knockdown of Aif in mice recapitulates many features of CKD, in association with a compensatory increase in the mitochondrial ATP pool via a shift toward mitochondrial fusion, excess mitochondrial reactive oxygen species production, and Nox4 upregulation. However, despite a 50% lower AIF protein content in the kidney cortex, there was no loss of complex I activity or assembly. When diabetes was superimposed onto Aif knockdown, there were extensive changes in mitochondrial function and networking, which augmented the renal lesion. Studies in patients with diabetic nephropathy showed a decrease in AIF within the renal tubular compartment and lower AIFM1 renal cortical gene expression, which correlated with declining glomerular filtration rate. Lentiviral overexpression of Aif1m rescued glucose-induced disruption of mitochondrial respiration in human primary proximal tubule cells. These studies demonstrate that AIF deficiency is a risk factor for the development of diabetic kidney disease.