30 resultados para interleukin 6 receptor

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The JAK/STAT signaling pathway is essential for myogenic regeneration and is regulated by a diverse range of ligands, including interleukin-6 (IL-6) and platelet-derived growth factor-BB (PDGF-BB). Our aim was to evaluate the responsiveness of IL-6 and PDGF-BB to intense exercise, along with STAT3 activation, before and after 12 weeks of resistance training. In young men, IL-6 and PDGF-BB protein concentrations were quantified in biopsied muscle and increased at 3 h post-exercise (17.5-fold and 3-fold, respectively). The response was unaltered by 12 weeks of training. Similarly, STAT3 phosphorylation was elevated post-exercise (12.5-fold), irrespective of training status, as was the expression of downstream targets c-MYC (8-fold), c-FOS (4.5-fold), and SOCS3 (2.3-fold). Thus, intense exercise transiently increases IL-6 and PDGF-BB proteins, and STAT3 phosphorylation is increased. These responses are preserved after intense exercise. This suggests they are not modified by training and may be an essential component of the adaptive responses to intense exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IL-6 and TNF-α have been associated with insulin resistance and type 2 diabetes. Furthermore, abnormalities in muscle fatty acid (FA) metabolism are strongly associated with the development of insulin resistance. However, few studies have directly examined the effects of either IL-6 or TNF-α on skeletal muscle FA metabolism. Here, we used a pulse-chase technique to determine the effect of IL-6 (50-5,000 pg/ml) and TNF-α (50-5,000 pg/ml) on FA metabolism in isolated rat soleus muscle. IL-6 (5,000 pg/ml) increased exogenous and endogenous FA oxidation by ≃50% (P < 0.05) but had no effect on FA uptake or incorporation of FA into endogenous lipid pools. In contrast, TNF-α had no effect on FA oxidation but increased FA incorporation into diacylglycerol (DAG) by 45% (P < 0.05). When both IL-6 (5,000 pg/ml) and insulin (10 mU/ml) were present, IL-6 attenuated insulin's suppressive effect on FA oxidation, increasing exogenous FA oxidation (+37%, P < 0.05). Furthermore, in the presence of insulin, IL-6 reduced the esterification of FA to triacylglycerol by 22% (P < 0.05). When added in combination with IL-6 or leptin (10 μg/ml), the TNF-α-induced increase in DAG synthesis was inhibited. In conclusion, the results demonstrate that IL-6 plays an important role in regulating fat metabolism in muscle, increasing rates of FA oxidation, and attenuating insulin's lipogenic effects. In contrast, TNF-α had no effect on FA oxidation but increased FA incorporation into DAG, which may be involved in the development of TNF-α-induced insulin resistance in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis. Our aim was to examine the possible direct relationship of interleukin-6 and TNFα with insulin sensitivity in humans. Methods. We carried out two series of euglycaemic-hyperinsulinaemic clamp experiments. In the first (CLAMP1), skeletal muscle mRNA expression and plasma concentrations of IL-6 and TNFα were examined in patients with Type 2 diabetes (n=6), subjects matched for age (n=6), and young healthy (n=11) control subjects during a 120-min supra-physiological hyperinsulinaemic (40 mU·m -2·min-1) euglycaemic clamp. In the second series of experiments (CLAMP2), patients with Type 2 diabetes (n=6) and subjects matched for age (n=7) were studied during a 240-min high-physiological hyperinsulinaemic (7 mU·m-2·min-1) euglycaemic clamp, during which arterial and venous (femoral and subclavian) blood samples were measured for IL-6 and TNFα flux. Results. In both experiments the glucose infusion rate in the patients was markedly lower than that in the other groups. In CLAMP1, basal skeletal muscle IL-6 and TNFα mRNA were the same in all groups. They were not affected by insulin and they were not related to the glucose infusion rate. In CLAMP2, neither cytokine was released from the arm or leg during insulin stimulation in either group. In both experiments plasma concentrations of these cytokines were similar in the patients and in the control subjects, although in CLAMP1 the young healthy control group had lower (p<0.05) plasma IL-6 concentrations. Using data from all subjects, a strong positive correlation (r=0.85; p<0.00001) was observed between basal plasma IL-6 and BMI. Conversely, a negative relationship (r=-0.345; p<0.05) was found between basal plasma TNFα and BMI, although this was not significant when corrected for BMI. When corrected for BMI, no relationship was observed between either basal plasma IL-6 or TNFα and GIR. Conclusions/interpretation. These data show that the increased circulating IL-6 concentrations seen in patients with Type 2 diabetes are strongly related to fat mass and not insulin responsiveness, and suggest that neither IL-6 nor TNFα are indicative of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The main focus of the PhD studies was the identification and characterization of a peptide antagonist which inhibited and/or down-regulated the binding of Interleukin-4 receptor to its cytokines IL-4 and IL-13 for allergy treatment. In addition, dietary components were tested for their ability to reduce inflammatory pathways of allergy, including fatty acids, resolvins and coenzyme Q10. Lastly, the Deakin AIRwatch project was undertaken which included the collection of ryegrass pollen data from 2012-2014 and its correlation with meteorological variables in regional Victoria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine the effects of 10 wk of resistance or aerobic exercise training on interleukin-6 (IL-6) and C-reactive protein (CRP). Further, to determine pretraining and posttraining associations between alterations of IL-6 and CRP and alterations of total body fat mass (TB-FM), intra-abdominal fat mass (IA-FM), and total body lean mass (TB-LM). METHODS: A sample of 102 sedentary subjects were assigned to a resistance group (n = 35), an aerobic group (n = 41), or a control group (n = 26). Before and after intervention, subjects were involved in dual-energy x-ray absorptiometry, muscular strength and aerobic fitness, measurements and further provided a resting fasted venous blood sample for measures of IL-6, CRP, cholesterol profile, triglycerides, glucose, insulin, and glycosylated hemoglobin. The resistance and the aerobic groups completed a respective 10-wk supervised and periodized training program, whereas the control group maintained sedentary lifestyle and dietary patterns. RESULTS: Both exercise training programs did not reduce IL-6; however, the resistance and the aerobic groups reduced CRP by 32.8% (P < 0.05) and 16.1% (P = 0.06), respectively. At baseline, CRP was positively correlated with IL-6 (r = 0.35), (TB-FM) (r = 0.36), and IA-FM (r = 0.31) and was inversely correlated with aerobic fitness measures (all r values > or = -0.24). Compared with the resistance and the control groups, the aerobic group exhibited significant (P < 0.05) improvements in all aerobic fitness measures and significant reductions in IA-FM (7.4%) and body mass (1.1%). Compared with the aerobic and the control groups, the resistance group significantly (P < 0.05) improved TB-FM (3.7%) and upper (46.3%) and lower (56.6%) body strength. CONCLUSION: Despite no alteration in baseline IL-6 and significantly smaller reductions in measures of adipose tissue as compared with the aerobic training group, only resistance exercise training resulted in significant attenuation of CRP concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The zebrafish possesses all of the interleukin 2 receptor family except interleukin 2 receptor alpha and removal of the common signalling component interleukin 2 receptor gamma causes a human like severe combined immunodeficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two leukaemia inhibitory factor (LIF) mutants, designated MH35-BD and LIF05, have been shown to have a capacity to inhibit the biological activities of not only human LIF (hLIF) but also other interleukin-6 (IL-6) subfamily cytokines such as human oncostatin M (hOSM). These cytokines share the same receptor complex in which the glycoprotein 130 (gp130) subunit is a common constituent. However, at low concentrations and in their monomeric forms, such molecules have a relatively short plasma half-life due to rapid clearance from the kidneys. Here, to prolong their serum half-lives, we have used a multi-step polymerase chain reaction (PCR) to fuse each of the LIF05 and MH35-BD cDNA fragments to a sequence encoding the Fc portion, and the hinge region, of the human immunoglobulin G (hIgG) heavy chain. The linking was achieved through an oligomer encoding a thrombin-sensitive peptide linker thus generating MH35-BD:Fc and LIF05:Fc, respectively. Both Fc fusion constructs were expressed in insect cell Sf21 and the proteins were purified by two successive affinity chromatography steps using nickel–nitrilotriacetic acid (Ni–NTA) agarose and protein A beads. The Ba/F3 cell-based proliferation assay was used to confirm that the proteins were biologically active. In addition, preliminary pharmacokinetics indicates that the Fc fusion constructs have a longer serum half-life compared to their non-fusion counterparts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a ‘wound that never heals’. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepcidin, a peptide hormone that decreases intestinal iron absorption and macrophage iron release, is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. Endogenous stimulants of Hepcidin transcription include bone morphogenic protein 6 (BMP6) and interleukin-6 (IL-6) by effects on mothers against decapentaplegic homolog (Smad)4 or signal transducer and activator of transcription (Stat)3, respectively. We conducted a small-scale chemical screen in zebrafish embryos to identify small molecules that modulate hepcidin expression. We found that treatment with the isoflavone, genistein, from 28-52 hours postfertilization in zebrafish embryos enhanced Hepcidin transcript levels, as assessed by whole-mount in situ hybridization and quantitative real-time reverse-transcriptase polymerase chain reaction. Genistein's stimulatory effect was conserved in human hepatocytes: Genistein treatment of HepG2 cells increased both Hepcidin transcript levels and promoter activity. We found that genistein's effect on Hepcidin expression did not depend on estrogen receptor signaling or increased cellular iron uptake, but was impaired by mutation of either BMP response elements or the Stat3-binding site in the Hepcidin promoter. RNA sequencing of transcripts from genistein-treated hepatocytes indicated that genistein up-regulated 68% of the transcripts that were up-regulated by BMP6; however, genistein raised levels of several transcripts involved in Stat3 signaling that were not up-regulated by BMP6. Chromatin immunoprecipitation and ELISA experiments revealed that genistein enhanced Stat3 binding to the Hepcidin promoter and increased phosphorylation of Stat3 in HepG2 cells. Conclusion: Genistein is the first small-molecule experimental drug that stimulates Hepcidin expression in vivo and in vitro. These experiments demonstrate the feasibility of identifying and characterizing small molecules that increase Hepcidin expression. Genistein and other candidate molecules may subsequently be developed into new therapies for iron overload syndromes.