81 resultados para ingestion

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study investigated whether acute (5 d) and/or short-term (28 d) creatine (Cr) ingestion altered glucose tolerance or insulin action in healthy, untrained men (aged 26.9 ± 5.7 yr; SD). Methods : Subjects were randomly allocated to either a Cr (N = 8) or placebo group (N = 9) and were tested in the control condition (presupplementation), and after 5 and a further 28 d of supplementation. The Cr group ingested 20 g and 3 g·d-1 of Cr for the first 5 and following 28 d, respectively. The placebo group ingested similar amounts of glucose over the same time period. During each testing period, subjects underwent an oral glucose tolerance test (OGTT) to determine insulin sensitivity, and six subjects from each group underwent a muscle biopsy before each OGTT. Results : Cr supplementation resulted in an increased (P < 0.05) muscle TCr content after both the acute and short-term loading phase compared with placebo. Neither acute nor short-term Cr supplementation influenced skeletal muscle glycogen content, glucose tolerance, or measures of insulin sensitivity. Conclusions: These findings demonstrated that acute Cr supplementation (20 g·d-1 for 5 d) followed by short-term Cr supplementation (3 g·d-1 for 28 d) did not alter insulin action in healthy, active untrained men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key goal of pre-exercise nutritional strategies is to maximize carbohydrate stores, thereby minimizing the ergolytic effects of carbohydrate depletion. Increased dietary carbohydrate intake in the days before competition increases muscle glycogen levels and enhances exercise performance in endurance events lasting 90 min or more. Ingestion of carbohydrate 3-4 h before exercise increases liver and muscle glycogen and enhances subsequent endurance exercise performance. The effects of carbohydrate ingestion on blood glucose and free fatty acid concentrations and carbohydrate oxidation during exercise persist for at least 6 h. Although an increase in plasma insulin following carbohydrate ingestion in the hour before exercise inhibits lipolysis and liver glucose output, and can lead to transient hypoglycaemia during subsequent exercise in susceptible individuals, there is no convincing evidence that this is always associated with impaired exercise performance. However, individual experience should inform individual practice. Interventions to increase fat availability before exercise have been shown to reduce carbohydrate utilization during exercise, but do not appear to have ergogenic benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six endurance-trained men [peak oxygen uptake (VO2) = 4.58 ± 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 ± 2% peak VO2 in an environmental chamber maintained at 35°C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 µCi [3-3H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (Ra) in Con trial] and glucose disappearance (Rd), were measured using a primed, continuous infusion of [6,6-2H]glucose, corrected for gut-derived glucose (gut Ra) in the CHO trial. No differences in heart rate, VO2, respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut Ra after 30 and 50 min (16 ± 5 µmol · kg-1 · min-1) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose Rd was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 ± 6.3 vs 34.6 ± 3.8 µmol · kg-1 · min-1, CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of ~1.0 g/min, increases glucose Rd but does not blunt the rise in HGP during exercise in the heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 ± 20 vs. 42 ± 16 g/h; P < 0.01) and cycling (57 ± 16 vs. 35 ± 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 ± 4 vs. 23 ± 3%; P < 0.01) and cycling (36 ± 5 vs. 22 ± 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 ± 32 vs. 141 ± 34 mmol/kg dry mass) or cycling (227 ± 36 vs. 216 ± 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of reduced acetylcarnitine availability on oxidative metabolism during the transition from rest to steady-state exercise. Eight male subjects completed two randomised exercise trials at 68 % of the peak rate of O2 uptake (V̇O2,peak). On one occasion subjects ingested 1 g (kg body mass)−1 glucose 75 min prior to exercise (CHO), whereas the other trial acted as a control (CON). Muscle samples were obtained pre- and 75 min post-ingestion, and following 1 and 10 min of exercise. Plasma glucose and insulin were elevated (P < 0.05), and plasma free fatty acids (FFA) were lower at the onset of exercise in CHO. Acetylcarnitine (CON, 4.8 ± 1.8; CHO, 1.5 ± 0.9 mmol (kg dry mass (d.m.))−1, P < 0.05) and acetyl CoA (CON, 13.2 ± 2.3; CHO, 6.3 ± 0.6 μmol (kg d.m.)−1, P < 0.05) were lower at rest, whereas pyruvate dehydrogenase activation (PDHa) was greater in CHO compared with CON (CON, 0.78 ± 0.07; CHO, 1.44 ± 0.19 mmol min−1 (kg wet mass (w.m.))−1). Respiratory exchange ratio (RER) was significantly elevated during exercise in CHO. The acetyl groups increased at similar rates at the onset of exercise (1 min) and there was no difference in substrate phosphorylation as determined from lactate accumulation and phosphocreatine degradation between trials. Subsequently, oxidative metabolism during the transition from rest to steady-state exercise was not affected by prior carbohydrate ingestion. Although exercise resulted in the rapid activation of PDH in both trials, PDHa was greater at 1 min in CHO (CON, 2.36 ± 0.22; CHO, 2.91 ± 0.18 mmol min−1 (kg w.m.)−1). No differences in muscle metabolite levels and PDHa were observed after 10 min of moderate exercise between trials. In summary, at rest, carbohydrate ingestion induced multiple metabolic changes which included decreased acetylcarnitine availability and small increases in PDHa. The prior changes in PDHa and acetylcarnitine availability had no effect on substrate phosphorylation and oxidative metabolism at the onset of exercise. These data suggest that acetylcarnitine availability is unlikely to be the site of metabolic inertia during the transition from rest to steady-state moderate intensity exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objectives The digestion rate of proteins and subsequent absorption of amino acids can independently modulate protein metabolism. The objective of the present study was to examine the blood amino acid response to whey protein isolate (WPI), β-lactoglobulin-enriched WPI, hydrolysed WPI and a flavour-identical control.

Methods Eight healthy adults (four female, four male) were recruited (mean±standard error of the mean: age, 27.0±0.76 years; body mass index, 23.2±0.8 kg/cm2) and after an overnight fast consumed 500 ml of each drink, each containing 25g protein, in a cross-over design. Blood was taken at rest and then every 15 min for 2 h post ingestion.

Results Ingesting the β-lactoglobulin-enriched WPI drink resulted in significantly greater plasma leucine concentrations at 45-120 min and significantly greater branched-chain amino acid concentrations at 60-105 min post ingestion compared with hydrolysed WPI. No differences were observed between WPI and β-lactoglobulin-enriched WPI, and all protein drinks resulted in elevated blood amino acids compared with flavour-identical control.

Conclusions In conclusion, whole proteins resulted in a more rapid absorption of leucine and branched-chain amino acid into the blood compared with the hydrolysed molecular form of whey protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central bearded dragon (Pogona vitticeps) is a medium-sized lizard that is common in semiarid habitats in Australia and that potentially is at risk of fenitrothion exposure from use of the chemical in plague locust control. We examined the effects of single sublethal doses of this organophosphate (OP; low dose = 2.0 mg/kg; high dose = 20 mg/kg; control = vehicle alone) on lizard thermal preference, standard metabolic rate, and prey-capture ability. We also measured activities of plasma total cholinesterase (ChE) and acetylcholinesterase before and at 0, 2, 8, 24, 120, and 504 h after OP dosing. Predose plasma total ChE activity differed significantly between sexes and averaged 0.66 ± 0.06 and 0.45 ± 0.06 μmol/min/ml for males and females, respectively. Approximately 75% of total ChE activity was attributable to butyrylcholinesterase. Peak ChE inhibition reached 19% 2 h after OP ingestion in the low-dose group, and 68% 8 h after ingestion in high-dose animals. Neither OP doses significantly affected diurnal body temperature, standard metabolic rate, or feeding rate. Plasma total ChE levels remained substantially depressed up to 21 d after dosing in the high-dose group, making this species a useful long-term biomonitor of OP exposure in its habitat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPK{alpha}2 during exercise in humans. Similarly, increasing glucose levels decreases AMPK{alpha}2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 ± 1% VO2 peak. In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPK{alpha}2 activity, AMPK{alpha}2 Thr172 phosphorylation and acetyl-CoA Ser222 phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to males, females oxidize proportionately more fat and less carbohydrate during endurance exercise performed in the fasted state. This study was designed to test the hypothesis that there may also be gender differences in exogenous carbohydrate (CHOexo) oxidation during exercise. Healthy, young males (n = 7) and females (n = 7) each completed 2 exercise trials (90 min cycle ergometry at 60% VO[sub2peak]), 1 week apart. Females were eumenorrheic and were tested in the midfollicular phase of their menstrual cycle. Subjects drank intermittently either 8% CHOexo (1 g glucose ⋅ kg ⋅ h[sup-1]) enriched with U-13C glucose or an artificially sweetened placebo during the trial. Whole-body substrate oxidation was determined from PER, urinary urea excretion, and the ratio of 13C:12C in expired gas during the final 60 min of exercise. During the placebo trial, fat oxidation was higher in females than in males (0.42 ± 0.07 vs. 0.32 ± 0.09 g ⋅ min[sup-1] . kg LBM[sup-1] x 10[sup-2]) at 30 min of exercise (p < .05). When averaged over the final 60 min of exercise, the relative proportions of fat, total carbohydrate, and protein were similar between groups. During CHOexo ingestion, both the ratio of 13C: 12C in expired gas (p < .05) and the proportion of energy derived from CHOexo relative to LBM (p < .05) were higher in females compared to males at 75- and 90-min exercise. When averaged over the final 60 min of exercise, the percentage of CHOexo to the total energy contribution tended to be higher in females (14.3 + 1.2%) than in males (11.2 ± 1.2%; p = .09). The reduction in endogenous CHO oxidation with CHOexo intake was also greater in females (12.9 ± 3.1%) than in males (5.1 ± 2.0%; p = .05). Compared to males, females may oxidize a greater relative proportion of CHOexo during endurance exercise which, in turn, may spare more endogenous fuel. Based on these observations, ingested carbohydrate may be a particularly beneficial source of fuel during endurance exercise for females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle possesses a high degree of plasticity and can adapt to both the physical and metabolic challenges that it faces. An acute bout of exercise is sufficient to induce the expression of a variety of metabolic genes, such as GLUT4, pyruvate dehydrogenase kinase 4 (PDK-4), uncoupling protein-3 (UCP3), and peroxisome proliferator-activated receptor-? coactivator 1 (PGC-1). Reducing muscle glycogen levels before exercise potentiates the effect of exercise on many genes. Similarly, altered substrate availability induces transcription of many of these genes. The purpose of this study was to determine whether glucose ingestion attenuates the exercise-induced increase in a variety of exercise-responsive genes. Six male subjects (28 ± 7 yr; 83 ± 3 kg; peak pulmonary oxygen uptake = 46 ± 6 ml·kg–1·min–1) performed 60 min of cycling at 74 ± 2% of peak pulmonary oxygen uptake on two separate occasions. On one occasion, subjects ingested a 6% carbohydrate drink. On the other occasion, subjects ingested an equal volume of a sweet placebo. Muscle samples were obtained from vastus lateralis at rest, immediately after exercise, and 3 h after exercise. PDK-4, UCP3, PGC-1, and GLUT4 mRNA levels were measured on these samples using real-time RT-PCR. Glucose ingestion attenuated (P < 0.05) the exercise-induced increase in PDK-4 and UCP3 mRNA. A similar trend (P = 0.09) was observed for GLUT4 mRNA. In contrast, PGC-1 mRNA increased following exercise to the same extent in both conditions. These data suggest that glucose availability can modulate the effect of exercise on metabolic gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several dietary binding agents were evaluated to produce an artificial moist diet which significantly improved water stability and ingestion efficiency, by redclaw crayfish, by up to 60%. Also behavioural feeding repertoire was described for the first time for this species. A bio-assay was then utilised to compare, and make recommendations on, various feed attractants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of experiments were conducted to examine the effect of ingesting beverages with differing carbohydrate (CHO) concentrations and osmolalities on metabolism and performance during prolonged exercise in different environmental conditions. In series 1, 12 subjects performed three cycling exercise trials to fatigue at 70% ·VO2peak in either 33°C(N = 6) (HT1) or 5°C (N = 6) (CT). Subjects ingested either a 14% CHO solution (osmolality = 390 mosmol·l-1) (HCHO); a 7% CHO solution (330 mosmol·l-1) (NCHO) or a placebo (90 mosmol·l-1) (CON1). In series 2, six subjects performed the same three trials at 33°C (HT2), while ingesting either NCHO, a 4.2% CHO solution (240 mosmol·l-1) (LCHO) or a placebo) (240 mosmol·l-1) (CON2). Plasma glucose was higher (P < 0.05) in HCHO than NCHO, which in turn was higher (P < 0.05) than CON1 in both CT and HT1. Plasma glucose was lower (P < 0.05) in CON2 compared with NCHO and LCHO in HT2. The fall in plasma volume was greater(P < 0.05) in HCHO than other trials in both CT and HT1 but was not different when comparing the three trials in HT2. Exercise time was not different when comparing the trials in either HT1 or HT2 but was longer(P < 0.05) in NCHO compared with HCHO, which, in turn, was longer(P < 0.05) than CON1 in CT. These data demonstrate that, during prolonged exercise in the heat, fatigue is related to factors other than CHO availability. In addition, during exercise in 5°C a 7% CHO solution is more beneficial for exercise performance than a 14% CHO solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study aimed to examine the effect of glycemic index of pre-exercise carbohydrate (CHO) ingestion on exercise metabolism and performance.

Methods: Eight endurance trained men ingested a high glycemic index (HGI), low glycemic index (LGI), or a placebo (CON) meal 45 min before exercise and then cycled for 50 min at 67% V·O2max. Subjects subsequently performed a 15-min self-paced performance ride in which total work (kJ) was recorded.

Results: Plasma glucose concentrations were higher (P < 0.01) after ingestion in HGI compared with LGI and CON (7.53 ± 0.64 vs 5.55 ± 0.21 and 4.65 ± 0.14 mmol·L-1 for HGI, LGI, and CON, respectively, 30 min postprandial; mean ± SE) but declined at the onset of exercise and were lower (P < 0.01) compared with LGI and CON (4.03 ± 0.31 vs 4.64 ± 0.24 and 5.09 ± 0.16 mmol·L-1 for HGI, LGI, and CON respectively; mean ± SE) at 10 min of exercise. Plasma glucose remained depressed (P < 0.01) until 30 min into exercise in HGI compared with other trials. Plasma insulin concentrations were higher (P < 0.01) following ingestion during rest and exercise in HGI compared with LGI and CON. Plasma FFA concentrations were lower (P < 0.05) following ingestion in HGI and LGI compared with CON and higher (P < 0.05) in LGI compared with HGI at the start and end of exercise. RER and CHO oxidation was higher (P < 0.01) in HGI compared with LGI and CON during submaximal exercise. There were no differences in work output during the performance cycle.


Conclusions: These data indicate that pre-exercise CHO feedings with varying glycemic indexes do not affect exercise performance following short term submaximal exercise despite alterations in metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This study aimed to determine if 25 days of canola oil intake in the absence of excess dietary salt or together with salt loading affects antioxidant and oxidative stress markers in the circulation. A further aim was to determine the mRNA expression of NADPH oxidase subunits and superoxide dismutase (SOD) isoforms in the aorta of stroke-prone spontaneously hypertensive (SHRSP) rats.

Methods: Male SHRSP rats, were fed a defatted control diet containing 10% wt/wt soybean oil or a defatted treatment diet containing 10% wt/wt canola oil, and given tap water or water containing 1% NaCl. Blood was collected at the end of study for analysis of red blood cell (RBC) antioxidant enzymes, RBC and plasma malondialdehyde (MDA), plasma 8-isoprostane and plasma lipids. The aorta was removed and the mRNA expression of NOX2, p22phox, CuZn-SOD, Mn-SOD and EC-SOD were determined.

Results: In the absence of salt, canola oil reduced RBC SOD and glutathione peroxidase, and increased total cholesterol and LDL cholesterol compared with soybean oil. RBC glutathione peroxidase activity was significantly lower in both the salt loaded groups compared to the soybean oil only group. In addition, RBC MDA and plasma HDL cholesterol were significantly higher in both the salt loaded groups compared to the no salt groups. Plasma MDA concentration was higher and LDL cholesterol concentration lower in the canola oil group loaded with salt compared to the canola oil group without salt. The mRNA expression of NADPH oxidase subunits and SOD isoforms were significantly reduced in the canola oil group with salt compared to canola oil group without salt.

Conclusion: In conclusion, these results indicate that canola oil reduces antioxidant status and increases plasma lipids, which are risk factors for cardiovascular disease. However, canola oil in combination with salt intake increased MDA, a marker of lipid peroxidation and decreased NAPDH oxidase subunits and aortic SOD gene expression.