52 resultados para goat

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the differences in the chemical composition, particularly fatty acids, of the lipid extracted from the fibre of bucks, does and castrated goats. The study provides a more detailed understanding of the chemical composition of buck fibre lipid and how it varies throughout the year, and also details the effect of body region and nutrition on the production and chemical composition of lipid from buck fibre. Lipid was extracted with either petroleum ether (non-polar) or chloroform/methanol azeotrope (polar) and analysed by gas chromatography and gas chromatography-mass spectrometry. The more polar solvent system extracted larger amounts of lipid and more of each individual fatty acid. The following buck specific ethyl branched fatty acids were identified: 2-ethylhexanoic, 4-ethylhexanoic, 2-ethyloctanoic, 4-ethyloctanoic, 6-ethyloctanoic, 2-ethyldecanoic, 4-ethyldecanoic, 2-ethyldodecanoic, 6-ethyldodecanoic, 4-ethyldodecanoic, 2-ethyltetradecanoic, 6-ethyltetradecanoic, 4-ethyltetradecanoic, 2-ethylhexadecanoic and 4-ethyloctadecanoic acids. Of these buck specific fatty acids only 4-ethylhexanoic (T), 4-ethyloctanoic, 4-ethyldecanoic, 4-ethyldodecanoic, 6-ethyldodecanoic (T), 4-ethyltetradecanoic, 2-ethylhexadecanoic (T) and 4-ethylhexadecanoic acids have been previously identified or tentatively identified (T) in buck fibre extracts. This shows that the chemical composition of buck fibre lipid is more complex than previously reported, and that it may be more difficult than previously thought to artificially duplicate the odour of the buck. Buck fibre samples had lower average concentrations of 2-methylpropanoic, 2-methylbutanoic, iso-pentadecanoic, anteiso-pentadecanoic, iso-hexadecanoic, anteiso-heptadecanoic, iso-octadecanoic and anteiso-nonadecanoic acids as compared with fibre samples from does, spayed does, or wethers that were castrated at one month of age. The reduced concentrations of these fatty acids in buck fibre extracts were likely to be due to the synthesis of ethyl branched derivatives of iso and anteiso fatty acids. Buck fibre samples had higher concentrations of benzoic acid as compared with fibre samples from does, spayed does, or wethers that were castrated at one month of age. The significance of these results is that non buck specific fatty acids may also make a contribution to the odour of bucks. When fibre samples were collected at various times throughout the year, it was found that the bucks had increased amounts of lipid and ethyl branched fatty acids in fibre samples shorn from March to September, as compared with fibre samples shorn in November and January. The increase in the amount of lipid and ethyl branched fatty acids corresponded with both the rutting period of the buck and the period when the buck odour was increased. This suggests that ethyl branched fatty acids could be pheromones. The variation in lipid content and fatty acid composition was also examined between fibre samples collected from different body regions of the buck during April, as alterations in sebaceous gland activity around the neck during rutting have been reported. It was found that the average amount of lipid in the neck region of the bucks was not statistically higher than the average amounts in the midside and hind regions. However, the ethyl branched fatty acid concentrations were statistically higher in the fibre from around the neck as compared with the fibre from the other body regions, which is consistent with the odour of the buck being most pronounced around the head and neck region. The lipid content and composition of fibre samples from bucks fed high and low quality diets (lucerne and pangola grass, respectively) was examined to determine the effect of nutrition on buck specific components. The high quality diet increased the amount of lipid and ethyl branched fatty acids in fibre samples collected in April from the neck, midside and hind regions, as compared with fibre samples from the corresponding body regions from bucks fed the low quality diet. Thus it may be possible for the pheromone levels of bucks to be increased by simply providing them with good nutrition. The lipid content and ethyl branched fatty acid concentrations of fibre samples increased earlier in the year for the lucerne fed bucks as compared with the pangola grass fed bucks. The lucerne fed bucks had increased concentrations of ethyl branched fatty acids in fibre samples shorn during December to June (6 months) whereas the pangola grass fed bucks had increased concentrations of ethyl branched fatty acids in fibre samples shorn during April to August (4 months). These observations show that good nutrition can result in both the earlier production of ethyl branched fatty acids and an extended period when ethyl branched fatty acids are produced. This suggests that nutrition can be used to manipulate pheromone levels in the buck. The period when the ethyl branched fatty acids were increased corresponded with the period when the plasma luteinizing hormone (LH) and testosterone concentrations, odour and sebaceous gland volume of the bucks were increased, which supports the assumption that ethyl branched fatty acids are involved in odour production and act as pheromones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of genotype and of frequency and timing of shearing, on mohair attributes and production of modern Angora goats was studied. Goats in the southern hemisphere grazed pastures between February 2004 and 2006. There were seven shearing treatments by three genetic strains with four or eight replicates of individual goats. Treatments were: three different 6-month shearing intervals and two of 12-month shearing intervals with different months of shearing, a 7-month winter shearing interval and a 3-month shearing interval. Genetic strain was based on sire line: 1·0 South African; 1·0 Texan; and Mixed 0·5 South African and 0·5 Texan. Annual greasy mohair production was 5·08 kg, and average clean fleece production was 4·37 kg. The Angora goats produced an annual clean fleece equivalent to 0·122 of their mean fleece-free live weight which was equal to 0·34 g/kg/day. Measurements were analysed over the period of spring 2004 shearing to spring 2005 shearing, excluding the June–December shearing treatment. Increased frequency of shearing increased fleece growth and affected 13 objective and subjective attributes of mohair that were evaluated including clean washing yield, fibre diameter and fibre diameter variation, incidence of medullated fibres, staple length, fibre curvature, crimp frequency, style, staple definition, staple fibre entanglement and staple tip shape. The direction of these effects were generally favourable and for most attributes the magnitude of the response was linear and commercially important. Each additional shearing resulted in an additional 149 g of clean mohair representing 0·034 of the annual clean mohair production. This increase was associated with a 0·6 cm increase in staple length and 0·32 μm increase in mean fibre diameter. In conclusion, Angora goats shorn less frequently grew less mohair that was more likely to be entangled in spring. Managers of Angora goats should take note of these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in cashmere production and fleece attributes associated with farm of origin, age and sex were quantified for commercial Australian cashmere goat enterprises. From 11 farms in four states, 1147 does and 97 wethers were monitored, representing 1- to 13-year-old goats. Individual clean cashmere production ranged from 21 to 389 g, with a mean ± standard deviation value of 134 ± 62 g. The mean cashmere production of 2-year-old does from different farms varied from 69 to 225 g and averaged 141 g. Mean ± s.d. greasy fleece weight was 394 ± 123 g, clean washing yield was 90.8 ± 4.1%, clean cashmere yield 33.4 ± 9.4%, cashmere fibre diameter 16.4 ± 1.6 µm, fibre curvature 48 ± 8.7 degrees/mm and staple length 8.7 ± 2.1 cm. There were large, commercially significant differences between farms for clean cashmere weight, mean fibre diameter and other attributes of cashmere. These were much larger than the effects of age and sex. Farm and age accounted for 42 to 67% of the variation in clean cashmere production, mean fibre diameter, fibre curvature, staple length and clean washing yield. Farm of origin affected clean cashmere yield, accounting for 24% of the variation. Sex of the goats had only a minor effect on the staple length of cashmere. The responses to age of clean cashmere weight, mean fibre diameter and the inverse of fibre curvature are very similar. Generally, cashmere production and mean fibre diameter increased with age. For the majority of farms, cashmere fibre curvature declined in a curvilinear manner with increases in age of goat. There were large differences in cashmere staple length from different farms, with means ranging from 7 to 12 cm. Between 1 and 2 years of age, the staple length of cashmere demonstrated a constant proportional increase. At ages older than 2 years, staple length either declined or increased by less than 1 cm with age, depending on the farm of origin. This study demonstrates that there are large gains in productivity that can be achieved from Australian cashmere goats. A better understanding of on-farm factors that influence cashmere production would enable all producers to optimise their production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production and financial benchmarking was undertaken with commercially motivated mohair, cashmere and goat meat farmers in Australia. There were large differences in animal and fleece production and financial returns between the best and worst performing farms. Farmers and industry groups reported that the process and results were helpful and resulted in them changing management practices. Benchmarking demonstrated that there is substantial scope to increase productivity and profitability through improved genetic selection and improved management of pastures, breeding flocks and in kid survival and growth.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to determine how the average mohair staple length (SL) differences between nine sampling sites vary between sex and flock, to identify differences in SL variability between sampling sites as a result of between-animal and between-sire variability and to determine SL correlations between sampling sites in between-animal and between-sire variability. Australian Angora goats (n=301) from two farms in southern Australia were sampled at 12 and 18 months of age at nine sites (mid side, belly, brisket, hind flank, hip, hock, mid back, neck and shoulder). Staples were taken prior to shearing at skin level and stretched SL determined. For each shearing, differences in SL between sampling sites, how these differences were affected by farm, sex and sire, and the covariance between sites for sire and individual animal effects were investigated by restricted maximum likelihood (REML) analyses. The median mid-side SL at 12 and 18 months of age was 110 and 130 mm, respectively, but the actual range in mid-side SL was 65–165 mm. There was an anterior–posterior decline in SL with the hock being particularly short. There was no evidence that the between-site correlation of the sire effects differed from 1, indicating that genetic selection for SL at one site will be reflected in SL over the whole fleece. However, low heritabilities of SL at the hock, belly and brisket or at any site at 12 months of age were obtained. There was more variability between sites than between sires, but the between-animal variation was greater. The hip and mid-back sites can be recommended for within-flock (culling) and genetic selection for SL due to their low sampling variability, moderate heritability and ease of location.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goats and other ruminants have two successive dentitions, the deciduous dentition (n = 20) and permanent dentition (n = 32). Upper incisors are absent and are replaced by a very thick connective tissue pad (palate) against which the lower incisors close.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian goat meat industry has mostly processed feral goats for export. As goat meat markets mature there will be an increased demand for farmed goats to meet supply, especially into niche markets. Production benchmarking showed that Victorian commercial goat meat producers are located generally in areas with <500 mm rainfall, usually in conjunction with other livestock and cropping enterprises. On average, 67% of farm area, equal to 701 ha (range 55 – 4400 ha) was allocated to the goat enterprise. Commercial producers used Boer bucks, at an average mating rate of 2.2%, over Boer X or feral X does. Weaning rates averaged 99% (range 51 - 165%). There was a large range in husbandry ($0 - $3.07) and supplementary feeding ($6.75 - $9.60) expenditure. Fifty percent of producers indicated that they carried out regular faecal egg counts to assess worm burdens. Seasonal supply patterns showed that producers were supplying Christmas and Easter markets with a live weight range of 12 - 40 kg and an overall average live weight of 26 kg. The issues of concern identified by commercial growers were: internal parasitism, doe fertility, kid predation, kid growth rates, Johnes disease, and fencing security. This study indicated that there is considerable scope to improve the productivity of the Victorian commercial goat meat industry. Most producers supply smaller carcases on a strong seasonal basis. This supply pattern inhibits industry development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Victorian goat meat industry is a significant contributor to export earnings, which is derived largely from the harvest of feral goats. The potential for exports of farmed goat meat into Asian product markets is being developed in a supply chain approach with producers, processors, exporters and Asian importers. Producers have been networked in four locations to improve supply capability and participate in production and economic benchmarking. In the absence of an existing market for premium farmed goat meat, a larger group of producers are cooperating with a marketer to develop a niche market in the Asian food service sector. This presents a challenge to the group in developing commercial relationships and playing a role in the marketing of their goat meat.