14 resultados para gene mutation

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Databases of mutations causing Mendelian disease play a crucial role in research, diagnostic and genetic health care and can play a role in life and death decisions. These databases are thus heavily used, but only gene or locus specific databases have been previously reviewed for completeness, accuracy, currency and utility. We have performed a review of the various general mutation databases that derive their data from the published literature and locus specific databases. Only two—the Human Gene Mutation Database (HGMD) and Online Mendelian Inheritance in Man (OMIM)—had useful numbers of mutations. Comparison of a number of characteristics of these databases indicated substantial inconsistencies between the two databases that included absent genes and missing mutations. This situation strengthens the case for gene specific curation of mutations and the need for an overall plan for collection, curation, storage and release of mutation data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: The aim of this thesis is to describe the process by which the inherited disease, cystic fibrosis, (CF) was recognised as an important clinical entity in the United Arab Emirates (UAE) and the Sultanate of Oman (Oman). It examines the clinical presentation of the first patients and assesses their degree of severity. Further, it describes the first studies carried out to determine the underlying CF mutations associated with the disease in the UAE and Oman. An estimate is offered of the birth frequency of the condition. Overall, the cultural, geographical and historical aspect of the societies in which the disease occurs is stressed. Methods: An initial literature search was carried out using Medline of any literature pertaining to the Arab World and CF. this was read and classified into the relevance to Arabs in general, the Middle East and then specifically the Arab (Persian) Gulf societies. Thereafter, a clinic was established at Tawam Hospital, Al Ain, UAE, for children presenting With chronic respiratory disease that could serve as a national referral centre. It was run by the Author as a service of the Paediatric Department of the UAE University Medical School. I sent a letter to every Paediatrician working in the UAE informing them of our clinic and offering our services for the diagnosis and management of chronic respiratory disease in children. This was based on the author's experience as a respiratory paediatrician in Australia and New Zealand and as the Professor of Paediatrics in the UAE. No such service then existed in the UAE. Funding was sought to establish a research programme and develop a molecular genetics laboratory in the UAE Medical School. A series of successful research applications provided the grants to commence the investigations. Once a small number of children had been identified as having CF from those referred to the respiratory clinic, the initial project was to assess and report their clinical presentation. Following this an early start was made on the identification of the mutations responsible. Once these were established an attempt was made to estimate the frequency of the condition at birth. Additional clinical studies revolved around assessing the severity of the condition that was associated with the main mutations that were identified. A clinical comparison was made with those with the mutation AF508 and the other main mutation, despite the obvious limitation of small numbers then available. Radiological assessment was made to evaluate the progression of the disease. The final aspect of the study was to assess patients from Oman and compare their findings and mutations with the neighbouring UAE. Based on information gained hypotheses are proposed regarding the spread of the gene mutation by population drift. Thesis outline: A literature review is presented in the form of a critique on the disease and a resume of the relevant aspects of the genetics of CF. Additionally, facts about the two countries' geography and history are presented. Finally, knowledge about CF mutations and population origins from other areas is presented. The second main section deals with the clinical features of the disorder as it presents in the UAE. Molecular findings are then presented and details of the common mutation found in Bedouin Arabs. Hypotheses are then presented based on the information gathered. Results: CF is not a rare disease in the Arab children of the UAE and Oman. These findings refute previous reports of CF being a rare or non-existent disease in Arabs. The condition presents with a severe clinical picture, with early colonisation of the respiratory tract with staphylococcus, haemophilus and pseudomonas organisms, even with conventional CF management practices in place. The CF mutation S549R is prevalent in Arabs of Bedouin stock, while AF508 is found in those of Baluch origin. The former may be descendants of Arabs who left southern Arabia and travelled to the Trucial Coast at the time of the destruction of the great dam at Marib. The origins of this mutation may lie in the area that corresponds to the modern Republic of Yemen. The latter groups are descendants of those who came originally from Baluchistan. It is hypothesised also that the ancestral home of the AF508 mutation may be in the geographical area now known as Baluchistan, that spans three separate modern political territories. The evidence presented supports the concept that the S549R mutation may be associated with a severe, if not the severest, clinical pattern recognised. It equates with that seen with the homozygous AF508 genotype. The absence of an additional mutation in the promoter region accounts for the different clinical pattern seen in previously described patients. Conclusions: There needs to be a major awareness of the presence of CF as a severe clinical disease in the children of the Gulf States. The clinical presentation and findings support the concept of under recognition of the disease. Climatic conditions put the children at special risk of hyponatraemia and electrolyte imbalance. The absence of surviving adults with the disease suggests premature deaths have occurred, but the high fertility rates have maintained the gene pool for this recessive disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background : Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Methods : Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results : The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions : This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lynch syndrome is the commonest inherited cause of colorectal cancer (CRC). Genetic anticipation occurs when the age of onset of a disorder decreases in successive generations. It is controversial whether this occurs in Lynch syndrome. Previous studies have included heterogenous groups of subjects from multiple families, including subjects with a clinical diagnosis (based on family history) as well as those with proven germline mismatch repair gene mutations. The purpose of this study was to determine whether genetic anticipation occurs in mismatch repair gene carriers from a single Lynch syndrome family. This study includes members of a single family known to carry an MLH1 gene mutation who are proven germline mutation carriers or obligate carriers (based on their offspring's mutation status). Evidence of genetic anticipation (determined by age of onset of first CRC) was sought in two ways: Firstly, subjects were grouped as parent-child pairs and individuals were compared with their own offspring; secondly they were grouped by generation within the family tree. The Kaplan-Meier technique was used to adjust for variable follow up times. The family tree consisted of 714 subjects. Ninety-two subjects over five generations were included in the study. There was no evidence of genetic anticipation over the generations. (P = 0.37). Similarly, in the 75 parent-child pairs identified, age of onset of CRC was similar for parents and children (P = 0.51). We could not identify any evidence of genetic anticipation in mutation carriers from a single family with Lynch syndrome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Menkes disease is a copper deficiency caused by mutations in the Menkes gene, which encodes a copper-transporting protein. This study identified the causative mutations in several Menkes patients, which provided a diagnostic test for relatives and identified critical regions of the Menkes protein. Further regions were identified through functional analysis of mutations introduced by in vitro mutagenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spondylocostal dysostoses (SCDs) are a heterogeneous group of vertebral malsegmentation disorders that arise during embryonic development by a disruption of somitogenesis. Previously, we had identified two genes that cause a subset of autosomal recessive forms of this disease: DLL3 (SCD1) and MESP2 (SCD2). These genes are important components of the Notch signaling pathway, which has multiple roles in development and disease. Here, we have used a candidate-gene approach to identify a mutation in a third Notch pathway gene, LUNATIC FRINGE (LFNG), in a family with autosomal recessive SCD. LFNG encodes a glycosyltransferase that modifies the Notch family of cell-surface receptors, a key step in the regulation of this signaling pathway. A missense mutation was identified in a highly conserved phenylalanine close to the active site of the enzyme. Functional analysis revealed that the mutant LFNG was not localized to the correct compartment of the cell, was unable to modulate Notch signaling in a cell-based assay, and was enzymatically inactive. This represents the first known mutation in the human LFNG gene and reinforces the hypothesis that proper regulation of the Notch signaling pathway is an absolute requirement for the correct patterning of the axial skeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The tx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell. Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multi-vesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of tx mice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brindled mouse is an accurate model of the fatal human X-linked copper deficiency disorder, Menkes disease. Males carrying the mutant allele of the Menkes gene orthologue Atp7a die in the second week of life. To determine whether the genetic defect in the brindled mice could be corrected by expression of the human Menkes gene, male transgenic mice expressing ATP7A from the chicken β-actin composite promoter (CAG) were mated with female carriers of the brindled mutation (Atp7aMo-br). Mutant males carrying the transgene survived and were fertile but the copper defect was not completely corrected. Unexpectedly males corrected with one transgenic line (T25#5) were mottled and resembled carrier females, this effect appeared to be caused by mosaic expression of the transgene. In contrast, males corrected with another line (T22#2) had agouti coats. Copper concentrations in tissues of the rescued mutants also resembled those of the heterozygous females, with high levels in kidney (84.6 ± 4.9 μg/g in corrected males vs. 137.0 ± 44.3 μg/g in heterozygotes) and small intestine (15.6 ± 2.5 μg/g in corrected males vs. 15.7 ± 2.8 μg/g in heterozygotes). The results show that the Menkes defect in mice is corrected by the human Menkes gene and that adequate correction is obtained even when the transgene expression does not match that of the endogenous gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleotide variation in a portion of the mitochondrial cytochrome c oxidase subunit1 (cox1) gene from asexual stages of bucephalids of southern Australian scallops (Chlamys asperrima, Chlamys bifrons and Pecten fumatus) was investigated using a mutation scanning–sequencing approach. Single-strand conformation polymorphism (SSCP) analysis revealed three main profile types (A, B and C) for parasites isolated from scallops. Sequence analysis revealed that samples represented by profiles B and C had a high degree (97.3%) of sequence similarity, whereas they were ~21% different in sequence from those represented by profile A. These findings suggested that at least two types or species (represented by profile A, or profile B or C) of bucephalid infect scallops, of which both were detected in South Australia, while only one was found in Victoria. The prevalence of bucephalids (and their SSCP haplotypes) appeared to differ among the three species of scallop in South Australia as well as between the two scallop species in Victoria, indicating a degree of host specificity. Adult bucephalids were collected from Eastern Australian Salmon (Arripis trutta), in an attempt to match them with the asexual stages from the scallop hosts. Neither of the two taxa of adult bucephalid (Telorhynchus arripidis and an un-named Telorhynchus species) shared SSCP profiles with the bucephalids from scallops, but were genetically similar, suggesting that the asexual stages from scallops may represent the genus Telorhynchus. This study, which assessed nucleotide sequence variation in a portion of the mitochondrial cox1 gene for bucephalids found in scallops and arripid fish, illustrates the usefulness of the mutation scanning approach to elucidate complex life-cycles of marine parasites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human telomerase reverse transcriptase (hTERT) underlies cancer cell immortalization, and the expression of hTERT is regulated strictly at the gene transcription. Here, we report that transcription factor Ets2 is required for hTERT gene expression and breast cancer cell proliferation. Silencing Ets2 induces a decrease of hTERT gene expression and increase in human breast cancer cell death. Reconstitution with recombinant hTERT rescues the apoptosis induced by Ets2 depression. In vitro and in vivo analyses show that Ets2 binds to the EtsA and EtsB DNA motifs on the hTERT gene promoter. Mutation of either Ets2 binding site reduces the hTERT promoter transcriptional activity. Moreover, Ets2 forms a complex with c-Myc as demonstrated by co-immunoprecipitation and glutathione S-transferase pulldown assays. Immunological depletion of Ets2, or mutation of the EtsA DNA motif, disables c-Myc binding to the E-box, whereas removal of c-Myc or mutation of the E-box also compromises Ets2 binding to EtsA. Thus, hTERT gene expression is maintained by a mechanism involving Ets2 interactions with the c-Myc transcription factor and the hTERT gene promoter, a protein-DNA complex critical for hTERT gene expression and breast cancer cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal vein occlusion (RVO) is associated with hyperhomocysteinaemia and the antiphospholipid syndrome—disorders known to contribute to both arterial and venous thrombosis. In both of these conditions and RVO, platelet activation occurs. Aspirin, not warfarin, is the most effective antithrombotic agent in RVO and, taken together, these observations suggest an important role for platelets in this common ocular thrombotic condition. Platelet glycoprotein Ia/IIa (GpIa/IIa) is an adhesion molecule mediating platelet–collagen interactions and is key to the initiation of thrombosis. Recently, the cellular density of this molecule was shown to be determined by two silent, linked polymorphisms (C807T/G873A) within the GpIa/IIa gene. There is evidence that some of the resulting genotypes are associated with thrombo-embolic disease. This study therefore aimed to establish the prevalence of the GpIa/IIa polymorphisms and the three commonest hereditary thrombophilic disorders (prothrombin gene G20210A (PT) mutation, Factor V Leiden (FVL), and the thermolabile methylene tetrahydrofolate reductase C677T (MTHFR) mutation) in patients with RVO and normal controls. The GpIa/IIa polymorphisms and thrombophilic abnormalities were all identified using the polymerase chain reaction.

Our results show that the frequency of the GpIa/IIa polymorphisms was similar in our normal control population to previously published series. Patients with RVO, however, had only a 10% (4/40) frequency of the lowest risk subtype (CC/GG) compared to 37.5% (15/40) in the control group—P 0.0039. The incidence of the PT, FVL, and MTHFR thrombophilic mutations was not different between the two groups, but interestingly none of the 7/40 RVO cases with a PT, FVL, or MTHFR mutation had the low-risk GpIa/IIa genotype while all but one of the controls did—P<0.05. Thus, 17.5% of RVO patients harboured more than one prothrombotic abnormality. The principal difference between the RVO and control group was the very high incidence of the intermediate-risk GpIa/IIa subtype (CT/GA)—82.5 vs 50%, P<0.05.

These results suggest a major role for GpIa/IIa polymorphisms in the pathogenesis of RVO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the α4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca2+ and Sr2+ force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa50 - pSr50) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-sample ratio. In addition to the essential objectives such as to reduce data noise, to reduce data redundancy, to improve sample classification accuracy, and to improve model generalization property, feature selection also helps biologists to focus on the selected genes to further validate their biological hypotheses.
Results: In this paper we describe an improved hybrid system for gene selection. It is based on a recently proposed genetic ensemble (GE) system. To enhance the generalization property of the selected genes or gene subsets and to overcome the overfitting problem of the GE system, we devised a mapping strategy to fuse the goodness information of each gene provided by multiple filtering algorithms. This information is then used for initialization and mutation operation of the genetic ensemble system.
Conclusion: We used four benchmark microarray datasets (including both binary-class and multi-class classification problems) for concept proving and model evaluation. The experimental results indicate that the proposed multi-filter enhanced genetic ensemble (MF-GE) system is able to improve sample classification accuracy, generate more compact gene subset, and converge to the selection results more quickly. The MF-GE system is very flexible as various combinations of multiple filters and classifiers can be incorporated based on the data characteristics and the user preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.