32 resultados para fat tissue

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of the cholesterol content and fatty acid composition of fresh retail Australian pork was undertaken to determine whether new breeding, feeding and processing methods had resulted in any compositional changes in fresh pork in the market place since surveys undertaken in previous decades. Samples of 13 popular pork cuts were purchased from randomly selected supermarkets and butchers’ stores in urban areas across the socioeconomic scale in three States of Australia, and analysed, separable fat and separable lean, in late 2005 and early 2006. Variability was low across States for saturated and monounsaturated fatty acids, but more pronounced for polyunsaturated acids. The separable lean portions of all pork cuts contained levels of n-3 fatty acids and conjugated linoleic acid (C18:1c9t11) in measurable but not nutritionally claimable amounts, whilst total trans fatty acid levels were very low. There appeared to be some differences in fatty acid composition across States that may have resulted from feeding method. Cholesterol contents were similar to levels in the 80s and 90s for separable lean pork tissue, but presently are lower for separable fat tissue than for separable lean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium L-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F2) (CTLF2), MSG-treated second generation (F2) (MSGF2), which suckled from their CTL and MSG biological dams, respectively, or CTLF2-CR, control offspring suckled by MSG dams and MSGF2-CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catch-up growth, a risk factor for later obesity, type 2 diabetes, and cardiovascular diseases, is characterized by hyperinsulinemia and an accelerated rate for recovering fat mass, i.e., catch-up fat. To identify potential mechanisms in the link between hyperinsulinemia and catch-up fat during catch-up growth, we studied the in vivo action of insulin on glucose utilization in skeletal muscle and adipose tissue in a previously described rat model of weight recovery exhibiting catch-up fat caused by suppressed thermogenesis per se. To do this, we used euglycemic-hyperinsulinemic clamps associated with the labeled 2-deoxy-glucose technique. After 1 week of isocaloric refeeding, when body fat, circulating free fatty acids, or intramyocellular lipids in refed animals had not yet exceeded those of controls, insulin-stimulated glucose utilization in refed animals was lower in skeletal muscles (by 20–43%) but higher in white adipose tissues (by two- to threefold). Furthermore, fatty acid synthase activity was higher in adipose tissues from refed animals than from fed controls. These results suggest that suppressed thermogenesis for the purpose of sparing glucose for catch-up fat, via the coordinated induction of skeletal muscle insulin resistance and adipose tissue insulin hyperresponsiveness, might be a central event in the link between catch-up growth, hyperinsulinemia and risks for later metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sixteen female cross-bred (Large White × Landrace) pigs (initial weight 65 kg) with venous catheters were randomly allocated to four treatment groups in a 2×2 factorial design. The respective factors were dietary fat (25 or 100 g/kg) and dietary conjugated linoleic acid (CLA; 0 or 10 g CLA-55/kg). Pigs were fed every 3 h (close to ad libitum digestible energy intake) for 8 d and were bled frequently. Plasma glucose and non-esterified fatty acid (NEFA) responses to insulin and adrenaline challenges were determined on day 8. Plasma concentrations of NEFA were significantly increased (10·5 and 5·4 % for low- and high-fat diets respectively, P=0·015) throughout the experiment, suggesting that there was a possible increase in fat mobilisation. The increase in lipolysis, an indicator of ß-adrenergic stimulated lipolysis, was also evident in the NEFA response to adrenaline. However, the increase in plasma triacylglycerol (11·0 and 7·1 % for low- and high-fat diets respectively, P=0·008) indicated that CLA could have reduced fat accretion via decreased adipose tissue triacylglycerol synthesis from preformed fatty acids, possibly through reduced lipoprotein lipase activity. Plasma glucose, the primary substrate for de novo lipid synthesis, and plasma insulin levels were unaffected by dietary CLA suggesting that de novo lipid synthesis was largely unaffected (P=0·24 and P=0·30 respectively). In addition, the dietary CLA had no effect upon the ability of insulin to stimulate glucose removal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conjugated linoleic acids (CLA) have been shown to decrease body fat content in pigs. It is possible that feeding pigs diets rich in CLA may increase carcass lipid CLA to levels that could provide health benefits when included as a part of a healthy diet. Therefore, the aim of the present study was to determine whether dietary CLA supplementation has any effect on the fatty acid composition of subcutaneous and intramuscular adipose tissue in pigs. Thirty-five female cross bred (Large White X Landrace) pigs (initial weight 57·2 kg and initial P2 back fat 11·5 mm) were used in the present study. Pigs were housed individually and randomly allocated to one of six dietary treatments (0·00, 1·25, 2·50, 5·00, 7·50 and 10·00 g CLA55 (55 g CLA isomers/100 g total fatty acids; Natural Lipids Ltd, Hovdebygda, Norway)/kg)
and fed their respective diets for 8 weeks. Twelve CLA isomers in the diet and in pig tissue lipids were separated by Agþ-HPLC. CLA was incorporated at fivefold higher levels in subcutaneous fat as compared with intramuscular fat and in a dose-dependant manner. Overall, the transfer efficiency of CLA was maximized at 5·00 g CLA55/kg. However, there was clear selectivity in the uptake or incorporation of cis,trans-9,11 isomer over the trans,cis-10,12 isomer. In general, CLA supplementation produced significant changes in skeletal muscle and adipose tissue fatty acid composition, indicating that dietary CLA had a potent affect on lipid transport and metabolism in vivo. Significant increases in myristic, palmitic and palmitoleic acids and a reduction in arachidonic acid were observed, suggesting an alteration in
activity of Δ5-, Δ6- and Δ9-desaturases in pig adipose tissue. In conclusion, feeding pigs diets supplemented with CLA increases carcass lipid CLA, but also results in changes in the fatty acid profile in pig fat that could potentially outweigh the benefits of CLA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods: Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results: Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion: Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely reported that an association exists between dietary fat intake and the incidence of prostate cancer in humans. To study this association, there is a need for an animal model where prostate carcinogenesis occurs spontaneously. The canine prostate is considered a suitable experimental model for prostate cancer in humans since it is morphologically similar to the human prostate and both humans and dogs have a predisposition to benign and malignant prostate disease. In this study, the FA and lipids profiles of the normal canine prostate tissue from nine dogs were examined. The total lipid content of the canine prostate tissue was 1.7±0.5% (wet weight). The lipid composition analysis using TLC-FID showed that the two major lipid classes were phospholipids and TAG. Total FA, phospholipid, and TAG FA analysis showed that the major FA were palmitic acid (16∶0), stearic acid (18∶0), oleic acid (18∶1), linoleic acid (18∶2n−6), and arachidonic acid (20∶4n−6), The n−3 FA were present at <3% of total FA and included α-linolenic acid (18∶3n−3) (in total and TAG tissue FA), EPA (20∶5n−3) (not in TAG), and DHA (22∶6n−3) (not in TAG). The n−3/n−6 ratio was 1∶11, 1∶13, and 1∶8 in total, phospholipid, and TAG FA, respectively. This study shows the canine prostate has a low level of n−3 FA and a low n−3/n−6 ratio. This is perhaps due to low n−3 content of the diet of the dogs. FA analysis of dogfoods available in Australia showed that the n−3 content in both supermarket and premium bran dogfoods was <3% (wet weight), and the n−3/n−6 ratio was low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background – It has been recognized that specific fatty acids have the ability to directly influence the abundance of gene transcripts in organs such as the liver. However little comparison has been made between the effects of common dietary of fatty acids and there influence on gene expression.
Objectives – To determine the effect of diets rich saturated, monounsaturated and polyunsaturated on gene transcripts associated with liver fat metabolism. Specifically how these three classes of fatty acids influence mRNA levels of key transcriptional regulators (PGC1a, PPARa, PPARd, SREBP1C & ChREBP), fat oxidative (ACO, LCPT1, HMG-CoA lyase & UCP-2) and fat synthetic (ACC, MCD, GPAT & malic enzyme) genes were investigated.
Design - Rats (n=32) were evenly divided into four groups; a saturated fat diet, a monounsaturated fat diet, a polyunsaturated fat diet (each diet contained 23% fat) and standard rat chow (7% fat) diet and fed for 12 weeks. Real-time PCR analysis was performed on liver tissue.
Outcomes – PGC1a and SREBP1C increased 1.9 fold or greater in all groups. Conversely, PPARa, PPARd and ChREBP demonstrated variable changes with diet composition. Monounsaturated and polyunsaturated fat increased HMG-CoA lyase 2.8 fold, a response that was absent in the saturated fat fed animals. UCP-2 was decrease 3.0 fold by all dietary treatments. Malic enzyme was increased 2.8 and 2.4 fold with saturated and polyunsaturated diets respectively, yet was unaltered by the monounsaturated fat diet.
Conclusion – Modifications in common dietary fat composition initiated divergent gene responses in liver. These alterations were complex, with no uniform alteration in transcription factors with closely related functions (PPARfamily) and genes encoding proteins within the same metabolic pathway (fat oxidation or fat synthesis). Further studies are necessary to identify the predominant mechanisms regulating these differences in gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE-/-) and compared with wild-type littermates. Compared with wild-type littermates, ACE-/- mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE-/- mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE-/- mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excrete in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE-/- mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of how tea and epigallocatechin-3-gallate (EGCG) lower body fat are not completely understood. This study investigated long-term administration of green tea (GT), black tea (BT), or isolated EGCG (1 mg/kg per day) on body composition, glucose tolerance, and gene expression related to energy metabolism and lipid homeostasis; it was hypothesized that all treatments would improve the indicators of metabolic syndrome. Rats were fed a 15% fat diet for 6 months from 4 weeks of age and were supplied GT, BT, EGCG, or water. GT and BT reduced body fat, whereas GT and EGCG increased lean mass. At 16 weeks GT, BT, and EGCG improved glucose tolerance. In the liver, GT and BT increased the expression of genes involved in fatty acid synthesis (SREBP-1c, FAS, MCD, ACC) and oxidation (PPAR-α, CPT-1, ACO); however, EGCG had no effect. In perirenal fat, genes that mediate adipocyte differentiation were suppressed by GT (Pref-1, C/EBP-β, and PPAR-γ) and BT (C/EBP-β), while decreasing LPL, HSL, and UCP-2 expression; EGCG increased expression of UCP-2 and PPAR-γ genes. Liver triacylglycerol content was unchanged. The results suggest that GT and BT suppressed adipocyte differentiation and fatty acid uptake into adipose tissue, while increasing fat synthesis and oxidation by the liver, without inducing hepatic fat accumulation. In contrast, EGCG increased markers of thermogenesis and differentiation in adipose tissue, while having no effect on liver or muscle tissues at this dose. These results show novel and separate mechanisms by which tea and EGCG may improve glucose tolerance and support a role for these compounds in obesity prevention.