3 resultados para diclofenac

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The multidrug resistance associated protein (MRP) 4 is a member of the adenosine triphosphate (ATP)-binding cassette transporter family. Camptothecins (CPTs) have shown substantial anticancer activity against a broad spectrum of tumors by inhibiting DNA topoisomerase I, but tumor resistance is one of the major reasons for therapeutic failure. P-glycoprotein, breast cancer resistance protein, MRP1, and MRP2 have been implicated in resistance to various CPTs including CPT-11 (irinotecan), SN-38 (the active metabolite of CPT-11), and topotecan. In this study, we explored the resistance profiles and intracellular accumulation of a panel of CPTs including CPT, CPT-11, SN-38, rubitecan, and 10-hydroxy-CPT (10-OH-CPT) in HepG2 cells with stably overexpressed human MRP4. Other anticancer agents such as paclitaxel, cyclophosphamide, and carboplatin were also included.
Methods HepG2 cells were transfected with an empty vehicle plasmid (V/HepG2) or human MRP4 (MRP4/HepG2). The resistance profiles of test drugs in exponentially growing V/HepG2 and MRP4/HepG2 cells were examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay with 4 or 48 h exposure time of the test drug in the absence or presence of various MRP4 inhibitors. The accumulation of CPT-11, SN-38, and paclitaxel by V/HepG2 and MRP4/HepG2 cells was determined by validated high-performance liquid chromatography methods.
Results Based on the resistance folds from the MTT assay with 48 h exposure time of the test drug, MRP4 conferred resistance to CPTs tested in the order 10-OH-CPT (14.21) > SN-38 carboxylate (9.70) > rubitecan (9.06) > SN-38 lactone (8.91) > CPT lactone (7.33) > CPT-11 lactone (5.64) > CPT carboxylate (4.30) > CPT-11 carboxylate (2.68). Overall, overexpression of MRP4 increased the IC50 values 1.78- to 14.21-fold for various CPTs in lactone or carboxylate form. The resistance of MRP4 to various CPTs tested was significantly reversed in the presence of dl-buthionine-(S,R)-sulfoximine (BSO, a γ-glutamylcysteine synthetase inhibitor), MK571, celecoxib, or diclofenac (all MRP4 inhibitors). In addition, the accumulation of CPT-11 and SN-38 over 120 min in MRP4/HepG2 cells was significantly reduced compared to V/HepG2 cells, whereas the addition of celecoxib, MK571, or BSO significantly increased their accumulation in MRP4/HepG2 cells. There was no significant difference in the intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells, indicating that P-glycoprotein was not involved in the observed resistance to CPTs in this study. MRP4 also conferred resistance to cyclophosphamide and this was partially reversed by BSO. However, MRP4 did not increase resistance to paclitaxel, carboplatin, etoposide (VP-16), 5-fluorouracil, and cyclosporine.
Conclusions Human MRP4 rendered significant resistance to cyclophosphamide, CPT, CPT-11, SN-38, rubitecan, and 10-OH-CPT. CPT-11 and SN-38 are substrates for MRP4. Further studies are needed to explore the role of MRP4 in resistance, toxicity, and pharmacokinetics of CPTs and cyclophosphamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targetsof reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.