54 resultados para cyclic AMP

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family expressed throughout the nervous system, binds to the PACAP-specific G-protein-coupled receptor family members to promote both neuronal differentiation and survival. Although the PACAP receptor is known to activate its effector protein, adenylate cyclase (AC), and thus enhance cAMP generation, the molecular mechanism utilized by the receptor to activate AC is lacking. Here, we show that PACAP induces neurite outgrowth in PC12 cells by induction of translocation of the PACAP type 1 receptor (PAC1R) into caveolin-enriched Triton X-100-insoluble microdomains, leading to stronger PAC1R-AC interaction and elevated cAMP production. Moreover, we demonstrate that translocation of PAC1R is blocked by various treatments that selectively disrupt caveolae. As a result, intracellular cAMP level is decreased and consequently the PACAP-induced neurite outgrowth retarded. In contrast, addition of exogenous ganglioside GM1 to the cells shows the opposite effects. These results therefore identify the PACAP-induced translocation of its G-protein-coupled receptor into caveolae, where both AC and the regulating G-proteins reside, as the key molecular event in activating AC and inducing cAMP-mediated differentiation of PC12 cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of natriuretic peptides on forskolin-evoked adenylyl cyclase activity was investigated in dispersed gill cells from the Australian short-finned eel (Anguilla australis). Molecular cloning techniques were employed to identify the putative G-protein-activating motif within the intracellular domain of the eel natriuretic peptide C receptor. Eel ANP, eel CNP and the NPR-C-specific C-ANF inhibited the forskolin-stimulated production of cyclic AMP. This effect was abolished by pretreatment of cells with pertussis toxin. Eel VNP was without effect on adenylyl cyclase activity. PCR and molecular cloning indicated that the intracellular domain of A. australis NPR-C has the same amino acid sequence as Anguilla japonica. Alignment of these sequences with Rattus norvegicus NPR-C indicated conservation of the putative G-protein-activating motif BB...BBXXB (B=basic, X=nonbasic residues). These data suggest that branchially-expressed NPR-C may play a physiological role additional to that of ligand clearance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gills are considered major targets for cardiac natriuretic peptides with studies confirming natriuretic peptide receptor presence on vascular and sometimes epithelial tissues. Natriuretic peptide intracellular signalling is via guanylyl cyclase receptors and the cGMP pathway, and via inhibitory G-proteins linked to cyclic AMP pathways. Natriuretic peptides in the gills alter branchial blood flow and may also alter ion transport in various salinities. We present an overview of natriuretic peptide cGMP and cAMP signalling in fishes and consider the implications of the recent discovery of several CNPs and BNP in bony fishes on natriuretic peptide receptor studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIV-1 infection impairs a number of macrophage effector functions, thereby contributing to development of opportunistic infections and the pathogenesis of AIDS. FcγR-mediated phagocytosis by human monocyte-derived macrophages (MDM) is inhibited by HIV-1 infection in vitro, and the underlying mechanism was investigated in this study. Inhibition of phagocytosis directly correlated with the multiplicity of HIV-1 infection. Expression of surface FcγRs was unaffected by HIV-1 infection, suggesting that inhibition of phagocytosis occurred during or after receptor binding. HIV-1 infection of MDM markedly inhibited tyrosine phosphorylation of the cellular proteins, which occurs following engagement of FcγRs, suggesting a defect downstream of initial receptor activation. FcγR-mediated phagocytosis in HIV-infected MDM was associated with inhibition of phosphorylation of tyrosine kinases from two different families, Hck and Syk, defective formation of Syk complexes with other tyrosine-phosphorylated proteins, and inhibition of paxillin activation. Down-modulation of protein expression but not mRNA of the γ signaling subunit of FcγR (a docking site for Syk) was observed in HIV-infected MDM. Infection of MDM with a construct of HIV-1 in which nef was replaced with the gene for the γ signaling subunit augmented FcγR-mediated phagocytosis, suggesting that down-modulation of γ-chain protein expression in HIV-infected MDM caused the defective FcγR-mediated signaling and impairment of phagocytosis. This study is the first to demonstrate a specific alteration in phagocytosis signal transduction pathway, which provides a mechanism for the observed impaired FcγR-mediated phagocytosis in HIV-infected macrophages and contributes to the understanding of how HIV-1 impairs cell-mediated immunity leading to HIV-1 disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper bar was drawn while a lead bar was extruded through a cyclically twisting die in a specifically designed experimental rig. The drawing/extrusion load fluctuated at the same frequency as that of die twisting. The load tended to be at a level of monotonic deformation when the die was changing direction. The degree of the reduction in load for both the drawing and extrusion processes depended on the deformation conditions and requires optimisation for industrial application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
AMP-activated protein kinase (AMPK) has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation.

Results
This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, β and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research.

Conclusion
Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model was developed for the approximation of ring strain energies of homo- and heterometallic, six- and eight-membered cyclic organometallic group 14 oxides and the degree of puckering of their ring conformations. The conformational energy of a ring is modelled as the sum of its angular strain components. The bending potential energy functions for the various endocyclic M–O–M′ and O–M–O linkages (M, M′=Si, Ge, Sn) were calculated at the B3LYP/(v)TZ level of theory using H3MOM′H3 and H2M(OH)2 as model compounds. For the six-membered rings, the minimum total angular contribution to ring strain, ERSGmin was calculated to decrease in the order: cyclo-(H2SiO)3 (13.0 kJ mol−1)>cyclo-H2Sn(OSiH2)2O (7.0 kJ mol−1)>cyclo-H2Ge(OSiH2)2O (4.9 kJ mol−1)>cyclo-H2Si(OSnH2)2O (3.4 kJ mol−1)>cyclo-(H2SnO)3 (1.7 kJ mol−1)>cyclo-H2Si(OGeH2)2O (0.8 kJ mol−1)≈cyclo-H2Ge(OSnH2)2O (0.7 kJ mol−1)>cyclo-H2Sn(OGeH2)2O (0.1 kJ mol−1)≈cyclo-(H2GeO)3 (0 kJ mol−1). All of the six-membered rings were predicted to adopt (nearly) planar conformations (a=0.996<a<1). By contrast, all eight-membered rings were predicted to adopt strainless, but puckered conformations. The degree of puckering was predicted to increase in the order: cyclo-(H2SiO)4 (a=0.983)<cyclo-H2Sn(OSiH2O)2SiH2 (a=0.959)<cyclo-(H2SiO)2(H2SnO)2 (a=0.942)< cyclo-H2Si(OSnH2O)2SiH2 (a=0.935)<cyclo-(H2SnO)4 (a=0.916)<cyclo-(H2GeO)4 (a=0.885). The differences in ring strain and the degree of puckering were linked to the different electronegativities of Si, Ge and Sn. The results obtained are consistent with experimental ring strain energies; reactivities towards ring opening polymerizations or ring expansion reactions and observed ring conformations of cyclic organometallic group 14 oxides.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiponectin is an adipocyte-derived hormone associated with antidiabetic actions. In rodent skeletal muscle, globular adiponectin (gAD) activates AMP-kinase (AMPK) and stimulates fatty acid oxidation effects mediated through the adiponectin receptors, AdipoR1 and AdipoR2. In the present study, we examined the mRNA expression of adiponectin receptors and the effects of gAD on AMPK activity and fatty acid oxidation in skeletal muscle myotubes from lean, obese, and obese type 2 diabetic subjects. Myotubes from all groups expressed approximately 4.5-fold more AdipoR1 mRNA than AdipoR2, and obese subjects tended to have higher AdipoR1 expression (P = 0.052). In lean myotubes, gAD activates AMPK[alpha]1 and -[alpha]2 by increasing Thr172 phosphorylation, an effect associated with increased acetyl-coenzyme A carboxylase (ACC[beta]) Ser221 phosphorylation and enhanced rates of fatty acid oxidation, effects similar to those observed after pharmacological AMPK activation by 5-aminoimidazole-4-carboxamide riboside. In obese myotubes, the activation of AMPK signaling by gAD at low concentrations (0.1 [mu]g/ml) was blunted, but higher concentrations (0.5 [mu]g/ml) stimulated AMPK[alpha]1 and -[alpha]2 activities, AMPK and ACC[beta] phosphorylation, and fatty acid oxidation. In obese type 2 diabetic myotubes, high concentrations of gAD stimulated AMPK[alpha]1 activity and AMPK phosphorylation; however, ACC[beta] phosphorylation and fatty acid oxidation were unaffected. Reduced activation of AMPK signaling and fatty acid oxidation in obese and obese diabetic myotubes was not associated with reduced protein expression of AMPK[alpha] and ACC[beta] or the expression and activity of the upstream AMPK kinase, LKB1. These data suggest that reduced activation of AMPK by gAD in obese and obese type 2 diabetic subjects is not caused by reduced adiponectin receptor expression but that aspects downstream of the receptor may inhibit AMPK signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AMP-activated protein kinase (AMPK) acts as a metabolic master switch regulating several intracellular systems. The effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. With increasingly available AMPK regulation data, it is critical to develop an efficient way to analyze the data since this assists in further understanding AMPK pathways. Bayesian networks can play an important role in expressing the dependency and causality in the data. This paper aims to analyse the regulation data using B-Course, a powerful analysis tool to exploit several theoretically elaborate results in the fields of Bayesian and causal modelling, and discover a certain type of multivariate probabilistic dependencies. The identified dependency models are easier to understand in comparison with the traditional frequent patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we demonstrate that compounds that promote stomatal opening such as kinetin, atrial natriuretic peptide (ANP) and plant natriuretic peptide immunoanalogues (irPNP) significantly elevate cGMP in guard cell protoplasts. Stomata opened by irPNP are induced to close in the presence of the guanylate cyclase inhibitor, LY 83583. The effect of cGMP on stomatal opening appears to be linked with Ca2+ levels. ANP, irPNP and 8-Br-cGMP all induce stomatal opening and this is inhibited by compounds that lower intracellular Ca2+ levels such as ethylene glycol bis(β-aminoethyl ether) N,N,N’,N’-tetraacetic acid (EGTA), ruthenium red and procaine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-α2 (~2.5-fold) and transcription of the uncoupling protein-3 (UCP3, ~4-fold) and hexokinase II (HKII, ~10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 µg · g-1 · min-1 for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Leptin is thought to regulate whole-body adiposity and insulin sensitivity, at least in part, by stimulating fatty acid metabolism via activation of AMP-kinase (AMPK) in skeletal muscle. Human obesity is associated with leptin resistance, and recent studies have demonstrated that hypothalamic expression of the suppressors of cytokine signaling 3 (SOCS3) regulates leptin sensitivity in rodents.

Objective: The objective of the study was to investigate the effects of leptin on fatty acid oxidation and AMPK signaling in primary myotubes derived from lean and obese skeletal muscle and evaluate the contribution of SOCS3 to leptin resistance and AMPK signaling in obese humans.

Results: We demonstrate that leptin stimulates AMPK activity and increases AMPK Thr172 and acetyl-CoA carboxylase-ß Ser222 phosphorylation and fatty acid oxidation in lean myotubes but that in obese subjects leptin-dependent AMPK signaling and fatty acid oxidation are suppressed. Reduced activation of AMPK was associated with elevated expression of IL-6 (~3.5-fold) and SOCS3 mRNA (~2.5-fold) in myotubes of obese subjects. Overexpression of SOCS3 via adenovirus-mediated infection in lean myotubes to a similar degree as observed in obese myotubes prevented leptin but not AICAR (5-amino-imidazole-4-carboxamide-1-ß-D-ribofuranoside) activation of AMPK signaling.

Conclusions: These data demonstrate that SOCS3 inhibits leptin activation of AMPK. These data suggest that this impairment of leptin signaling in skeletal muscle may contribute to the aberrant regulation of fatty acid metabolism observed in obesity and that pharmacological activation of AMPK may be an effective therapy to bypass SOCS3-mediated skeletal muscle leptin resistance for the treatment of obesity-related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current work, constitutive models are developed to describe the cyclic hardening and softening led by the strain path chaneg.  The contribution of deformation conditions such as drawing and extrusion speed, cyclic rotating angle on the drawing and extrusion force will be investigated.  The development of such constitutive models will provide insight into the optimization of operation conditions to explore the potential of industrial applications.