30 resultados para biomaterials, carbohydrates, macroporous polymers, poly(2-hydroxyethyl methacrylate), synthesis

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self-assembled nanostructures of the P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(var epsilon-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core–shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the focus on developing new polymer electrolytes continues to intensify in the area of alternative energy conversion and storage devices, the rational design of polyelectrolytes with high single ion transport rates has emerged as a primary strategy for enhancing device performance. Previously, we reported a series of sulfonate based copolymer ionomers based on using mixed bulky quaternary ammonium cations and sodium cations as the ionomer counterions. This led to improvements in the ionic conductivity and an apparent decoupling from the Tg of the ionomer. In this article, we have prepared a new series of ionomers based on the homopolymer of poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) using differing sizes of the ammonium counter-cations. We observe a decreasing Tg with increasing the bulkiness of the quaternary ammonium cation, and an increasing degree of decoupling from Tg within these systems. Somewhat surprisingly, phase separation is observed in this homopolymer system, as evidenced from multiple impedance arcs, Raman mapping and SEM. The thermal properties, morphology and the effect of plasticizer on the transport properties in these ionomers are also presented. The addition of 10 wt% plasticizer increased the ionic conductivity between two and three orders of magnitudes leading to materials that may have applications in sodium based devices. This journal is

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report for the first time an in situ photopolymerization of model co-monomers, 2-hydroxyethyl methacrylate (HEMA) and tetra (ethylene glycol) diacrylate (TEGDA), in an IL electrolyte containing I2 for DSSCs. TiO2 nanoparticles were used as the photo-initiator and co-gelator in a charge transfer polymerization reaction. The gel-IL polymer obtained was characterized in terms of the diffusion properties of the electrolyte. Preliminary results from DSSCs assembled using the gel-IL electrolyte showed energy conversion efficiency of 3.9% at 1 sun (AM1.5) and 5.0% at 0.39 sun illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methoxy-ethylene glycol methacrylates, CH2=CMeCOO(CH2CH2O)nMe (n = 1, 2, 3), ethoxy-triethylene glycol methacrylate, CH2=CMeCOO(CH2CH2O)3Et, and N,N-dimethylaminoethyl methacrylate, CH2=CMeCOOCH2CH2NMe2, were used to synthesise the corresponding polymers. Conductivities of these polymers complexed with lithium perchlorate were investigated. Tetraethylene glycol dimethyl ether was used as plasticiser to increase the conductivity of the materials. A conductivity of 10−5 S cm−1 was obtained at room temperature for the plasticised polymer samples. Effects of polymer structure, plasticiser, salt concentration and temperature on conductivity and glass transition temperature of the polymer electrolytes are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductive textiles with specific properties can be produced by the chemical polymerisation of a range of 3-alkylpyrroles in the presence of textiles. The morphologies of these coatings are altered from the traditional conductive coatings. Comparison using a SEM reveals substantial differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soluble conducting poly(3-decanylpyrrole) was directly applied to textiles as a nanoparticle emulsion, using a variety of techniques including hand-brushing, dipping and spray painting. These coatings were compared to those formed by chemical polymerization of 3-decanylpyrrole on the surface of the textile by solution, using vapor and spray polymerization methods. The coating formed using chemical polymerization methods had lower surface resistivity than that formed by direct application of a soluble polymer.

It was observed that applied coatings of poly(3-decanylpyrrole) showed a smoother surface morphology with a more even dispersion compared to those formed by chemical methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(2-acrylamido-2-methyl-propane-1-sulphonic acid), poly(AMPS), has been ion exchanged with lithium and sodium to form alkali metal ion conducting polyelectrolytes. In the pure form these materials are rigid and would thus show limited conductivity. However addition of water or dimethylsulphoxide, as plasticizers, increases the conductivity by several orders or magnitude. The thermal analysis and NMR relaxation studies of these systems suggest that the increase in conductivity is as a direct result of increased ion mobility although the FTIR evidence still suggests significant ion association consistent with weak electrolytes. Although the Tg's of the sodium form of the polymer were higher, this system displayed higher conductivities than lithium which can be explained by a greater degree of ion dissociation and hence a larger number of charge carriers in the case of sodium poly(AMPS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. To investigate initial comfort and adaptation of currently successful low oxygen transmissibility soft lens wearers refitted with silicone hydrogel (SH) lenses for daily wear.

Methods. Fifty-five subjects were enrolled in a subject-masked 5-month clinical trial in which they wore 5 SH lenses in a randomized, crossover design. Comfort, burning, and dryness were rated on scales of 0 to 100 immediately on insertion and the time for lens settling was recorded. Symptoms were then rated at various times, using BlackBerry wireless communication devices (Research in Motion, Waterloo, Canada), during the day for 2 cycles of 2 weeks wear for each lens type.

Results. Comfort immediately on insertion varied between lens types (P=0.002). All lens types were reported by the subjects to have settled within 30 to 45 sec of insertion (P=0.14) and settled comfort was greater than comfort immediately on insertion (P<0.001). Comfort within the first hour of wear also varied between lens types (P=0.02). Comfort during the day decreased significantly for all lenses (P=0.001), but there was no difference between lenses (P=0.19) and no effect of lens age (P=0.15). The wearing times were greater with the SH lenses than the habitual lenses worn before study commencement (P=0.001). Overall performance of the lenses after 4 weeks was high, with no difference between lenses (P=0.45).

Conclusions. Initial comfort and adaptation to all SH lenses were good and no differences in the overall ratings were found between the 5 SH lenses investigated. Decreased comfort was noted later in the day with all lens types, but longer wearing times were reported with the SH lenses than previous hydroxyethyl methacrylate-based lenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel tri-block copolymer poly(oxopentanoate ethyl methacrylate)-block-poly(pyridyl disulfide ethyl acrylate)-block-poly(ethylene glycol acrylate) [poly(OEMA-b-PDEA-b-PEGA)], retaining active keto groups and pyridyl disulfide (PDS) side functionalities, was synthesized as a drug delivery vehicle using reversible addition-fragmentation chain transfer (RAFT) polymerization method. One mimic drug pyridine-2-thione (PT) was introduced into the monomer, PDEA for copolymerization. The other mimic drug O-benzylhydroxylamine (BHA) was conjugated with tri-block copolymer via efficient oxime coupling chemistry, followed by the attachment onto graphene via π-π stacking interaction to obtain a graphene/tri-block copolymer composite. 1H NMR, UV-vis absorption spectroscopy, fluorescence spectroscopy, gel permeation chromatography (GPC), atomic force microscope (AFM) and transmission electron microscope (TEM) were used to verify the successful step-wise preparation of the tri-block copolymer and drug loaded composite. In vitro release behaviors of BHA and PT from graphene/tri-block copolymer composite via dual drug release mechanisms were investigated. BHA can be released under acid environment, while PT will be released in the presence of reducing agents, such as dithiothreitol (DTT) or glutathione (GSH). It can be envisioned that this novel composite could be exploited as a novel intracellular drug delivery system via dual release mechanisms.