4 resultados para bacteriophage

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual ryegrass toxicity (ARGT) is responsible for significant stock losses in South Australia and Western Australia. The toxicity is caused by corynetoxins produced by the bacterium Rathayibacter toxicus (with the possible involvement of a bacteriophage), which infects annual ryegrass (Lolium rigidum). Polymerase chain reaction (PCR)-based assays, compatible with an existing enzyme-linked immunosorbent assay for the corynetoxins, have been developed and used to screen L. rigidum for both the presence of R. toxicus and for the bacteriophage isolate NCPPB 3778. The results from analysing bacterially infected galls from toxic grain screenings showed a positive correlation between the presence of the bacterium and corynetoxins but not with the bacteriophage. Analysis of pasture-derived samples of annual ryegrass showed about a 50% correlation of corynetoxins with bacterial presence and about a 5% correlation of phage with the presence of the bacterium. These observations support the potential application of the PCR-based assays in providing a useful, complementary tool in the assessment of the likelihood of pasture and feed to cause ARGT and to enable a better understanding of the complex aetiology of ARGT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriophage NCIMB-10645 of Serratia marcescens (NCIMB-10644) was assessed as a tracer of aquatic contamination with the intention of using it at the Black Rock ocean outfall in South Eastern Australia. Growth conditions and a liquid culture growth curve were assessed. The bacteriophage was subjected to survival trials and a method of concentrating NCIMB-10645 developed. NCIMB-10645 was assessed as a tracer at Deakin University then released from the Black Rock Sewage Treatment Plant. Contamination movement away from the treatment plant was found to be predominantly affected by Easterly wind conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annual Ryegrass Toxicity (ARGT) is a potentially lethal disease affecting livestock grazing on pastures or consuming fodder that include annual ryegrass (Lolium rigidum) contaminated with corynetoxins. The corynetoxins (CTs), among the most lethal toxins produced in nature, are produced by the bacterium Rathayibacter toxicus that uses a nematode vector to attach to and infect the seedheads of L.rigidum. There is little known of the factors that control toxin production. Several studies have speculated that a bacteriophage specific to R.toxicus may be implicated in CT production. We have developed a PCR-based assay to test for both bacterium and phage in ryegrass material and results indicate that there is a correlation between phage and bacterial presence in all toxic ryegrass samples tested so far. This PCR-based technique may ultimately allow for a rapid, high-throughput screening assay to identify potentially toxic pastures and feed in the field. Currently, ~80% of the 45 Kb genome has been sequenced an investigation to further elucidate its potential role in toxin production.Furthermore, specific alterations in gene expression as a result of exposure to CTs or the closely related tunicamycins (TMs), which are commercially available and considered biologically indistinguishable from CTs, will be evaluated for use as biomarkers of exposure. The effects of both toxins will be analysed in vitro using a rat hepatocyte cell line and screened on a low-density DNA micro array “CT-Chip” that contains <100 selected rat hepatic genes. The results are expected to further define the bioequivalence of CTs and TMs and to identify levels of exposure that are related to specific toxic effects or have no adverse effect on livestock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times the use of protein-specific probes in the field of proteomics has undergone evolutionary changes leading to the discovery of new probing techniques. Protein-specific probes serve two main purposes: epitope mapping and detection assays. One such technique is the use of phage display in the random selection of peptide mimotopes (mimtags) that can tag epitopes of proteins, replacing the use of monoclonal antibodies in detection systems. In this study, phage display technology was used to screen a random peptide library with a biologically active purified human interleukin-4 receptor (IL-4R) and interleukin-13 (IL-13) to identify mimtag candidates that interacted with these proteins. Once identified, the mimtags were commercially synthesised, biotinylated and used for in vitro immunoassays. We have used phage display to identify M13 phage clones that demonstrated specific binding to IL-4R and IL-13 cytokine. A consensus in binding sequences was observed and phage clones characterised had identical peptide sequence motifs. Only one was synthesised for use in further immunoassays, demonstrating significant binding to either IL-4R or IL-13. We have successfully shown the use of phage display to identify and characterise mimtags that specifically bind to their target epitope. Thus, this new method of probing proteins can be used in the future as a novel tool for immunoassay and detection technique, which is cheaper and more rapidly produced and therefore a better alternative to the use of monoclonal antibodies.