15 resultados para antigen presenting cell

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)- specific CD8þ T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor a2 (IL-13Ra2), which can ‘‘transiently’’ block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Ra2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8þ Tcells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8þ T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer’s patch (PP). Data revealed that intranasal delivery of these IL-13Ra2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8þ Tcells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendritic cells [DCs] are potent antigen presenting cells [APC], which plays a vital role in immune system by detecting and capturing pathogens in the body. DCs perform a pivotal role in induction of T cell response. Regulation of immune response can be achieved by specific antigen [Ag] delivery to DCs. A delivery system that can efficiently target and present Ags to DCs for the purpose of anti-tumour activity is currently a topic of significant research interest. DCs are receiving attention due to their key role in anti cancer host response and due to their adjuvanic property in tumour vaccines. Role of toll like receptors [TLR] in innate immune system and their part in eventual stimulation of adaptive immunity is exploited to develop vaccines. TLR agonists in conjugation with vaccines are shown to increase therapeutic efficacy in some cases. TLRs also play a vital role in protecting the cornea from invading pathogens. Due to adverse effects in the treatment of ocular inflammations, cancer and in viral infections, an alternate approach such as the use of TLRs will solve the inquisitive question regarding side effects. The intended delivery is attained by the use of nanoparticles which in turn leads to prolonged half-life in the body. Co-delivery of Ags, TLRs and immunomodulators using nanoparticles has been demonstrated to elicit potent cellular immune responses and are currently under development of clinically applicable immunisations and vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Defective efferocytosis may perpetuate inflammation in smokers with or without chronic obstructive pulmonary disease (COPD). Macrophages may phenotypically polarize to classically activated M1 (proinflammatory; regulation of antigen presentation) or alternatively activated M2 (poor antigen presentation; improved efferocytosis) markers. In bronchoalveolar lavage (BAL)–derived macrophages from control subjects and smoker/ex-smoker COPD subjects, we investigated M1 markers (antigen-presenting major histocompatibility complex [MHC] Classes I and II), complement receptors (CRs), the high-affinity Fc receptor involved with immunoglobulin binding for phagocytosis (Fc-gamma receptor, FcγR1), M2 markers (dendritic cell–specific intercellular adhesion molecule-grabbing nonintegrin [DC-SIGN] and arginase), and macrophage function (efferocytosis and proinflammatory cytokine production in response to LPS). The availability of glutathione (GSH) in BAL was assessed, because GSH is essential for both M1 function and efferocytosis. We used a murine model to investigate macrophage phenotype/function further in response to cigarette smoke. In lung tissue (disaggregated) and BAL, we investigated CRs, the available GSH, arginase, and efferocytosis. We further investigated the therapeutic effects of an oral administration of a GSH precursor, cysteine l-2-oxothiazolidine-4-carboxylic acid (procysteine). Significantly decreased efferocytosis, available GSH, and M1 antigenpresenting molecules were evident in both COPD groups, with increased DC-SIGN and production of proinflammatory cytokines. Increased CR-3 was evident in the current-smoker COPD group. In smoke-exposed mice, we found decreased efferocytosis (BAL and tissue) and available GSH, and increased arginase, CR-3, and CR-4. Treatment with procysteine significantly increased GSH, efferocytosis (BAL: control group, 26.2%; smoke-exposed group, 17.66%; procysteine + smoke-exposed group, 27.8%; tissue: control group, 35.9%; smoke-exposed group, 21.6%; procysteine + smoke-exposed group, 34.5%), and decreased CR-4 in lung tissue. Macrophages in COPD are of a mixed phenotype and function. The increased efferocytosis and availability of GSH in response to procysteine indicates that this treatment may be useful as adjunct therapy for improving macrophage function in COPD and in susceptible smokers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The consumption of vegetables containing the flavonols quercetin and kaempferol reduces the risk of cancer. We utilized human gut (HuTu-80 and Caco-2) and breast cancer cells (PMC42) to show the synergistic effect of quercetin and kaempferol in reducing cell proliferation. A trend in reduction of total cell counts was seen following a single exposure, a 4-day exposure or a 14-day exposure to quercetin and kaempferol. Combined treatments with quercetin and kaempferol were more effective than the additive effects of each flavonol. The reduction in cell proliferation was associated with decreased expression of nuclear proliferation antigen Ki67 and decreased total protein levels in treated cells relative to controls. In conclusion, the synergistic antiproliferative effect of quercetin and kaempferol demonstrated in cultured human cells has broad implications for understanding the influence of dietary nutrients in vivo, where anticancer effects may be a result of nutrients which act in concert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallothioneins (MTs) belong to a family of cysteine-rich, metal-binding intracellular proteins, which have been linked with cell proliferation. In this study, expression levels of the 8 known MT-1 and MT-2 functional isoforms in human invasive ductal breast cancer specimens were determined by RT–PCR. The expression profiles of the MT protein and MT-2A mRNA were further evaluated in 79 cases of human invasive ductal breast carcinoma by immunohistochemistry and in situ hybridization, and correlated with cancer cell proliferation (determined by Ki-67 nuclear antigen immunolabeling). MT-1A, MT-1E, MT-1F, MT-1G, MT-1H, MT-1X and MT-2A but not MT-1B, were detected in breast cancer tissue samples. The MT-2A mRNA transcript was the highest among all the isoforms detected. A positive correlation was observed between MT-2A mRNA and MT protein expression with Ki-67 labeling (P = 0.0003 and P < 0.0001, respectively) but not with apoptosis (P = 0.1244 and P = 0.8189, respectively). Co-localization of the MT protein and Ki-67 nuclear antigen in breast cancer cells was demonstrated by double immunofluorescence staining. There was also significantly higher MT protein and MT-2A mRNA expression in histological grade 3 tumors than in histological grade 1 and 2 tumors. The finding that MT 2A appears to be the main isoform associated with cell proliferation in invasive ductal breast cancer tissues, may have therapeutic implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for α4 and β7 integrins in mediating leucocyte entry into the central nervous system in the multiple sclerosis (MS)-like disease experimental autoimmune encephalomyelitis (EAE) has been demonstrated. However, the individual contributions of their respective ligands mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-cadherin expressed on the blood-brain barrier has not been determined. In the present paper, it is shown that an antibody directed against MAdCAM-1, the preferential ligand for α4β7, effectively prevented the development of a progressive, non-remitting, form of EAE, actively induced by injection of myelin oligodendrocyte glycoprotein peptide (MOG(35-55)) autoantigen. Combinational treatment with both anti-MAdCAM-1, VCAM-1, and intercellular adhesion molecule-1 (ICAM-1) (ligand for integrin lymphocyte function-associated antigen (LFA)-1) mAbs led to more rapid remission than that obtained with anti-MAdCAM-1 antibody alone. However, neither MAdCAM-1 monotherapy, nor combinational antibody blockade was preventative when administered late in the course of disease progression. In conclusion, MAdCAM-1 plays a major contributory role in the progression of chronic EAE and is a potential therapeutic target for the treatment of MS. Critically, antivascular addressin therapy must be given eaA role for alpha4 and beta7 integrins in mediating leucocyte entry into the central nervous system in the multiple sclerosis (MS)-like disease experimental autoimmune encephalomyelitis (EAE) has been demonstrated. However, the individual contributions of their respective ligands mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-cadherin expressed on the blood-brain barrier has not been determined. In the present paper, it is shown that an antibody directed against MAdCAM-1, the preferential ligand for alpha4beta7, effectively prevented the development of a progressive, non-remitting, form of EAE, actively induced by injection of myelin oligodendrocyte glycoprotein peptide (MOG(35-55)) autoantigen. Combinational treatment with both anti-MAdCAM-1, VCAM-1, and intercellular adhesion molecule-1 (ICAM-1) (ligand for integrin lymphocyte function-associated antigen (LFA)-1) mAbs led to more rapid remission than that obtained with anti-MAdCAM-1 antibody alone. However, neither MAdCAM-1 monotherapy, nor combinational antibody blockade was preventative when administered late in the course of disease progression. In conclusion, MAdCAM-1 plays a major contributory role in the progression of chronic EAE and is a potential therapeutic target for the treatment of MS. Critically, antivascular addressin therapy must be given early in the course of disease prior to the establishment of irreversible damage if it is to be effective, as a single treatment modality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle invasive transitional cell carcinoma (TCC) of the bladder is associated with a high frequency of metastasis, resulting in poor prognosis for patients presenting with this disease. Models that capture and demonstrate step-wise enhancement of elements of the human metastatic cascade on a similar genetic background are useful research tools. We have utilized the transitional cell carcinoma cell line TSU-Pr1 to develop an in vivo experimental model of bladder TCC metastasis. TSU-Pr1 cells were inoculated into the left cardiac ventricle of SCID mice and the development of bone metastases was monitored using high resolution X-ray. Tumor tissue from a single bone lesion was excised and cultured in vitro to generate the TSU-Pr1-B1 subline. This cycle was repeated with the TSU-Pr1-B1 cells to generate the successive subline TSU-Pr1-B2. DNA profiling and karyotype analysis confirmed the genetic relationship of these three cell lines. In vitro, the growth rate of these cell lines was not significantly different. However, following intracardiac inoculation TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2 exhibited increasing metastatic potential with a concomitant decrease in time to the onset of radiologically detectable metastatic bone lesions. Significant elevations in the levels of mRNA expression of the matrix metalloproteases (MMPs) membrane type 1-MMP (MT1-MMP), MT2-MMP and MMP-9, and their inhibitor, tissue inhibitor of metalloprotease-2 (TIMP-2), across the progressively metastatic cell lines, were detected by quantitative PCR. Given the role of MT1-MMP and TIMP-2 in MMP-2 activation, and the upregulation of MMP-9, these data suggest an important role for matrix remodeling, particularly basement membrane, in this progression. The TSU-Pr1-B1/B2 model holds promise for further identification of important molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRβ chains. Such skewing is also observed, though less commonly, in TCRα chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVβ and/or TCRVα CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of “high” versus “low” avidity, or “central” versus “effector” memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid recall of influenza virus-specific CD8+ T cell effector function is protective, although our understanding of T cell memory remains incomplete. Recent debate has focused particularly on the CD62L lymph node homing receptor. The present analysis shows that although functional memory can be established from both CD62Lhi and CD62Llo CD8+ T cell subsets soon after initial encounter between naive precursors and antigen, the optimal precursors are CD8+CD44hiCD25lo immune lymphocytes isolated from draining lymph nodes on day 3.5 after influenza virus infection. Analysis of primed T cells at different times after challenge indicates that the capacity to transfer memory is diminished at the peak of the primary cytotoxic T lymphocyte response, challenging speculations that the transition to memory first requires full differentiation to effector status. It seems that location rather than CD62Lhi/lo phenotype may be the more profitable focus for further dissection of the early establishment of T cell memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial cell adhesion molecule (EpCAM) is overexpressed in most solid cancers and is an ideal antigen for clinical applications in cancer diagnosis, prognosis, imaging, and therapy. Currently, most of the EpCAM-based diagnostic, prognostic, and therapeutic strategies rely on the anti-EpCAM antibody. However, the use of EpCAM antibody is restricted due to its large size and instability. In this study, we have successfully identified DNA aptamers that selectively bind human recombinant EpCAM protein. The aptamers can specifically recognize a number of live human cancer cells derived from breast, colorectal, and gastric cancers that express EpCAM but not bind to EpCAM-negative cells. Among the aptamer sequences identified, a hairpin-structured sequence SYL3 was optimized in length, resulting in aptamer sequence SYL3C. The Kd values of the SYL3C aptamer against breast cancer cell line MDA-MB-231 and gastric cancer cell line Kato III were found to be 38±9 and 67±8 nM, respectively, which are better than that of the full-length SYL3 aptamer. Flow cytometry analysis results indicated that the SYL3C aptamer was able to recognize target cancer cells from mixed cells in cell media. When used to capture cancer cells, up to 63% cancer cell capture efficiency was achieved with about 80% purity. With the advantages of small size, easy synthesis, good stability, high binding affinity, and selectivity, the DNA aptamers reported here against cancer biomarker EpCAM will facilitate the development of novel targeted cancer therapy, cancer cell imaging, and circulating tumor cell detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the site of release of a model vaccine antigen from plant cells and the corresponding induced immune response. Three plant tissues (leaf, fruit and hairy root) and two formulations (aqueous and lipid) were compared in two mouse trials. A developed technique that enabled detection of antigen release by plant cells determined that antigen release occurred at early sites of the gastrointestinal tract when delivered in leaf material and at later sites when delivered in hairy roots. Lipid formulations delayed antigen release from all plant materials tested. While encapsulation in the plant cell provided some protection of the antigen in the gastrointestinal tract and influenced antigen release, formulation medium was also an important consideration with regard to vaccine delivery and immunogenicity. Systemic immune responses induced from the orally delivered vaccine benefited from late release of antigen in the mouse gastrointestinal tract. The influences to the mucosal immune response induced by these vaccines were too complex to be determined by studies performed here with no clear trend regarding plant tissue site of release or formulation medium. Expression and delivery of the model antigen in plant material prepared in an aqueous formulation provided the optimal systemic and mucosal, antigen-specific immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains a global health problem, in part due to failure of the currently available vaccine, BCG, to protect adults against pulmonary forms of the disease. We explored the impact of pulmonary delivery of recombinant influenza A viruses (rIAVs) on the induction of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4(+) and CD8(+) T-cell responses and the resultant protection against M. tuberculosis infection in C57BL/6 mice. Intranasal infection with rIAVs expressing a CD4(+) T-cell epitope from the Ag85B protein (PR8.p25) or CD8(+) T-cell epitope from the TB10.4 protein (PR8.TB10.4) generated strong T-cell responses to the M. tuberculosis-specific epitopes in the lung that persisted long after the rIAVs were cleared. Infection with PR8.p25 conferred protection against subsequent M. tuberculosis challenge in the lung, and this was associated with increased levels of poly-functional CD4(+) T cells at the time of challenge. By contrast, infection with PR8.TB10.4 did not induce protection despite the presence of IFN-γ-producing M. tuberculosis-specific CD8(+) T cells in the lung at the time of challenge and during infection. Therefore, the induction of pulmonary M. tuberculosis epitope-specific CD4(+), but not CD8(+) T cells, is essential for protection against acute M. tuberculosis infection in the lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated in-vivo cell-mediated immune (CMI) responses in elite swimmers over a 5-month training season, to assess the impact of intense training on changes in T-lymphocyte function. The CMI Multitest was performed early in the season after a period of rest, during peak high-intensity training, and late in the season during the precompetition taper period. The CMI tests were performed at rest prior to a morning training session. There were no significant differences between the swimmers and a control group for any of the seven CMI antigen responses at any of the test points during the season. In the swimmers, there were no significant differences in the number of positive responses to the CMI antigens between the three test points (Friedman's test = 9.6364, p = 0.47) and no significant differences for the CMI cumulative scores (Friedman's test = 11.98, p = 0.29) at each test point. There was no consistent pattern for changes in CMI cumulative scores for individual swimmers over the training season. The findings of this study indicate that, despite reported transient T-lymphocyte immunosuppression immediately after intense exercise, probably associated with acute redistribution and temporary pooling of blood T cell subsets in extremities, the T-lymphocyte function involved in CMI responses is not compromised by extended periods of training at an elite level.