84 resultados para Wetlands construídos

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Along the south coast of Australia, wetlands on the floodplains of lowland rivers and estuaries have been severely altered by agriculture and urbanization. Efforts to restore or rehabilitate these wetlands are hampered by insufficient knowledge of the original condition of these wetlands, or their variability in time and space. This research describes the macroinvertebrate community of wetlands on the floodplain of the Gellibrand River and estuary, which has suffered comparatively few human impacts. The aim of the research was to describe the variability of macroinvertebrate communities as a baseline for the future management of these wetlands, and to contribute to the general understanding of estuary-floodplain wetlands, thereby improving the basis for their management.

The Gellibrand River has a catchment area of approximately 1200 km2 draining the western slopes of the Otway Ranges, and entering the Southern Ocean at Princetown. From a mean annual flow of 315 000 mL, 25 000 mL are removed per annum for agricultural and domestic use (O'May & Wallace 2001), and flows are closer to natural regimes than most other Western Victorian rivers. The estuary is a bar-built, salt-wedge estuary that becomes completely blocked by the sand bar in most years, during summer and autumn. Over past decades, the estuary mouth has been opened artificially in most years. to prevent flooding of agricultural land and roads adjacent to the wetlands. At its maximum, the salt-wedge penetrates approximately 10 km upstream from the river mouth, but the estuary may also be completely fresh during high winter discharge
(Mckay 2000).

The wetlands surrounding Princetown cover 119 ha and are listed as nationally important (Environment Australia 2001). This listing regards the wetlands as an important habitat for animals at vulnerable stages of their life cycle and a refuge from adverse conditions, such as drought. They are a good example of coastal brackish and freshwater marshes, with an important ecological and hydrological role as part of a large wetland
complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A national approach to the conservation of biodiversity in Australia’s freshwater ecosystems is a high priority. This requires a consistent and comprehensive system for the classification, inventory, and assessment of wetland ecosystems. This paper, using the State of Victoria as a case study, compares two classification systems that are commonly utilized to delineate and map wetlands—one based on hydrology (Victorian Wetland Database [VWD]) and one based on indigenous vegetation types and other natural features (Ecological Vegetation Classes [EVC]). We evaluated the extent of EVC mapping of wetlands relative to the VWD classification system using a number of datasets within a geographical information system. There were significant differences in the coverage of extant EVCs across bioregions, different-sized wetlands, and VWD wetland types. Resultant depletion levels were markedly different when examined using the two systems, with depletion levels, and therefore perceived conservation status, of EVCs being significantly higher. Although there is little doubt that many wetland ecosystems in Victoria are in fact threatened, the extent of this threat cannot accurately be determined by relying on the EVC mapping as it currently stands. The study highlighted the significant impact wetland classification methods have in determining the conservation status of freshwater ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The River Murray, Australia, is a highly regulated river from which almost 80% of mean annual flow is removed for human use, primarily irrigated agriculture. Consequent changes to the pattern and volume of river flow are reflected in floodplain hydrology and, therefore, the wetting/drying patterns of floodplain wetlands. To explore the significance of these changes, macroinvertebrate samples were compared between permanent and temporary wetlands following experimental flooding in a forested floodplain of the River Murray. Weekly samples from two permanent wetlands and four associated temporary sites were used to track changes in macroinvertebrate assemblage composition. Non-metric multidimensional scaling was used to ordinate the macroinvertebrate data, indicating consistent differences between the biota of permanent and temporary wetlands and between the initial and later assemblages in the temporary sites. There were marked changes over time, but little sign that the permanent and temporary assemblages were becoming more alike over the 25-week observation period. The apparent heterogeneity of these systems is of particular importance in developing river management plans which are likely to change flooding patterns. Such plans need to maintain a mosaic of wetland habitats if floodplain biodiversity is to be supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the macrophyte assemblages of temporary floodplain wetlands situated on the floodplain of the Murray River, southeast Australia. Wetlands in the study are subject to flooding, the frequency, duration, and magnitude of which are dictated by the current, regulated river-flow regime. Our aim was to examine the influence of the existing flooding regime on macrophyte assemblages and to trial a monitoring program, based on a multiple before-after-control-impact (MBACI) design, to detect the impact of proposed environmental water allocations (EWAs) on the wetlands. Two categories of flooding regime were identified based on the flow magnitudes required for flooding to occur (flooding thresholds). In this scheme, wetlands with relatively low flooding thresholds are classed as ‘impact’ and those with higher thresholds are classed as ‘control.’ The wetlands were surveyed over a two-year period that incorporated at least one wetting-drying cycle at all wetlands. Results showed significant differences between survey times (season and year), but differences between flooding regime categories were significant only for some components of macrophyte assemblages. Differences between survey dates appear to reflect largely short-term responses to the most recent flood events. However, macrophyte differences observed between control and impact wetlands reflected the cumulative effect of flood events over several years. Differences between control and impact wetlands were strongest for post-flooding surveys based on full assemblages (using ANOSIM) and among specific taxa and functional groups (using ANOVA). Power to detect differences between control and impact wetlands was greatest for species richness and total abundance, but taxa with low variability among wetlands, and hence good power, were actually less sensitive to hydrologic change. We conclude that the MBACI design used in this study will be most effective in detecting wetland ecosystem responses to the implementation of EWAs if response variables are carefully chosen based on their sensitivity to hydrologic change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The establishment of a comprehensive, adequate and representative (CAR) reserve system is not only an objective of all States and Territories but it is an international commitment, since Australia signed the Convention on Biological Diversity. Various reviews note that Australia lacks a representative freshwater reserve system. However, there has been surprisingly little quantitative analysis on the reservation of freshwater ecosystems from which to identify the gaps or deficiencies in the reserve system.

We compared aspects of reservation in wetlands in northern Victoria before and after a major public land use investigation by the government-appointed Victorian Environmental Assessment Council, which sought specifically to recommend a CAR reserve system. Significant improvements in the reservation status for depleted and under-reserved wetland ecosystems, and improved reserve design have been recommended by the investigation. Increases in the reservation of nationally and internationally significant wetlands were also recommended. These recommendations are now under consideration by the Victorian Government.

Some of the challenges in decision-making during this investigation and their implications on wetland conservation are highlighted. The paper concludes by outlining broader policy dilemmas, decisions and debates that that require addressing in relation to developing a system of Freshwater Protected Areas in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restoration works are carried out to alleviate human impacts and improve habitats within ecosystems. However, human impacts may also create new (anthropogenic) habitat for species to exploit.A dilemma arises when proposed restoration works would remove anthropogenic habitat and the assemblages it supports. Sediment input into the Glenelg River has formed tributary junction plug wetlands at confluences. Sand slug removal is proposed as part of river rehabilitation, but would also drain plug wetlands. We sampled four plug wetland, four river run and three river pool sites to determine whether plug wetlands influence water quality and add to the biodiversity of macroinvertebrates in the Glenelg River.Water quality and macroinvertebrate diversity were similar in plug wetlands, river runs and river pools.Assemblages were distinct among all sites, regardless of type, so there was no characteristic ‘plug-wetland fauna’. Therefore, although removal of plug wetlands would not cause a dramatic loss of invertebrate biodiversity, it would destroy anthropogenic habitat that supports a similar range of species to natural habitats in a river subject to multiple degrading processes. Gains from rehabilitation should be weighed against the value of anthropogenic habitat and the extent of similar habitat lost elsewhere in the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a robust methodology to detect and estimate the size of temporary wetlands using AVHRR satellite data within large areas (106 km2) of the arid zone. The methodology uses spectral matching and exclusion of salt surfaces to discriminate between water and non-water surfaces. The status of 115 lakes was used to evaluate the methodology. A classification accuracy of 98% was achieved for wetlands >120 ha, with accuracy of area estimates varying with the size and shape of individual lakes. Spectral matching of AVHRR data has methodological and cost advantages over the use of higher spatial resolution data for understanding changes in the distribution of water at broad scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates nutrient contribution to six hyper-eutrophic lakes located within close proximity of each other on the Swan Coastal Plain and 20 kilometres south of the Perth Central Business District, Western Australia. The lakes are located within a mixed land use setting and are under the management of a number of state and local government departments and organisations. These are a number of other lakes on the Swan Coastal Plain for which the majority are less than 3 metres in depth and considered as an expression of the groundwater as their base is below the regional groundwater table throughout most of the year. The limited amount of water quality data available for these six lakes and the surface water and groundwater flowing into them has restricted a thorough understanding of the processes influencing the water quality of the lakes. Various private and public companies and organisations have undertaken studies on some of the individual wetlands and there is a wide difference in scientific opinion as to the major source of the nutrients to those wetlands. These previous studies failed to consider regional surface water and groundwater effects on the nutrient fluxes and they predominantly only investigated single wetland systems. This study attempts for the first time to investigate the regional contribution of nutrients to this system of wetlands existing on the Swan Coastal plain. As such, it also includes new research on the nutrient contribution to some of the remaining wetlands. The research findings indicate that the lake sediments represent a considerable store of nutrients (nitrogen and phosphorus). These sediments in turn control the nutrient status of the lake's water column. Surface water is found to contribute on an event-basis load of nutrients to the lakes whilst the groundwater surprisingly appears to contribute a comparatively low input of nutrients but governs the water depth. Analysis of the regional groundwater shows efficient denitrifying abilities as a result of denitrifying bacteria and the transport is localised. Management recommendations for the remediation of the social and environmental value of the lakes include treatment of the lake’s sediments via chemical bonding or atmospheric oxidation; utilising the regional groundwater’s denitrifying abilities to ‘treat’ the surface water via infiltration basins; and investigating the merits of managed or artificial aquifer recharge (MAR).