13 resultados para Voltammetry, Fluorescence spectroscopy, Salbutamol, DNA, MCR-ALS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence has become a widely used technique for applications in noninvasive diagnostic tissue spectroscopy. The standard model used for characterizing fluorescence photon transport in biological tissue is based on the diffusion approximation. On the premise that the total energy of excitation and fluorescent photon flows must be conserved, we derive the widely used diffusion equations in fluorescence spectroscopy and show that there must be an additional term to account for the transport of fluorescent photons. The significance of this additional term in modeling fluorescence spectroscopy in biological tissue is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lawsone (2-hydroxy-1,4-naphthoquinone) reacts with latent fingermark deposits on paper surfaces to yield purple-brown impressions of ridge details which are also photoluminescent; this compound represents the first in a completely new class of fingermark detection reagents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced infrared absorption (SEIRA) spectra of manganese (III) tetraphenylporphine chloride (Mn(TPP)Cl) on metal island films were measured in transmission mode. Dependences of the enhancement factor of SEIRA on both the sample quantity and the type of evaporated metal were investigated by subsequently increasing the amount of Mn(TPP)Cl on gold and silver substrates. The enhancement increases nonlinearly with the amount of sample and varies slightly with the thickness of metal islands. In particular, the SEIRA transmission method presents an anomalous spectral enhancement by a factor of 579, with substantial spectral shifts, observed only for the physisorbed Mn(TPP)Cl that remained on a 3-nm-thick gold film after immersion of the substrates into acetone. A charge-transfer (CT) interaction between the porphyrinic Mn and gold islands is therefore proposed as an additional factor in the SEIRA mechanism of the porphyrin system. The number of remaining porphyrin molecules was estimated by calibration-based fluorescence spectroscopy to be 2.36×1013 molecules (i.e., ~2.910-11 mol/cm2) for a 3-nm-thick gold film, suggesting that the physisorbed molecules distributed very loosely on the metal island surface as a result of the weak van der Waals interactions. Fluorescence microscopy revealed the formation of microcrystalline porphyrin aggregates during the consecutive increase in sample solution. However, the immersion likely redistributed the porphyrin to be directly attached on the gold surface, as evidenced by an absence of porphyrinic microcrystals and the observed SEIRA enhancement. The distinctive red shift in the UV-visible spectra and the SEIRA-enhanced peaks indicate the presence of a preferred orientation in the form of the porphyrin ring inclined with respect to the gold surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel tri-block copolymer poly(oxopentanoate ethyl methacrylate)-block-poly(pyridyl disulfide ethyl acrylate)-block-poly(ethylene glycol acrylate) [poly(OEMA-b-PDEA-b-PEGA)], retaining active keto groups and pyridyl disulfide (PDS) side functionalities, was synthesized as a drug delivery vehicle using reversible addition-fragmentation chain transfer (RAFT) polymerization method. One mimic drug pyridine-2-thione (PT) was introduced into the monomer, PDEA for copolymerization. The other mimic drug O-benzylhydroxylamine (BHA) was conjugated with tri-block copolymer via efficient oxime coupling chemistry, followed by the attachment onto graphene via π-π stacking interaction to obtain a graphene/tri-block copolymer composite. 1H NMR, UV-vis absorption spectroscopy, fluorescence spectroscopy, gel permeation chromatography (GPC), atomic force microscope (AFM) and transmission electron microscope (TEM) were used to verify the successful step-wise preparation of the tri-block copolymer and drug loaded composite. In vitro release behaviors of BHA and PT from graphene/tri-block copolymer composite via dual drug release mechanisms were investigated. BHA can be released under acid environment, while PT will be released in the presence of reducing agents, such as dithiothreitol (DTT) or glutathione (GSH). It can be envisioned that this novel composite could be exploited as a novel intracellular drug delivery system via dual release mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Elsevier Ltd. All rights reserved. Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene's macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π-π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π-π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV-vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm.

Methodology/Principal Findings
Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm.

Conclusions
The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and complete characterisation of the fluorescent ligand, 4-acridinol-1-sulphonic acid (the acridine analogue of 8-quinolinol-5-sulfonic acid) is described. Using a judicious array of nuclear magnetic resonance spectroscopy experiments, the structural elucidation and full assignment of all proton and carbon chemical shifts were afforded. The 4-acridinol-1-sulphonic acid was found to behave in a similar manner to 8-quinolinol-5-sulphonic acid, forming fluorescent complexes with magnesium(II) and zinc(II). The uncorrected emission maxima for the metal–acridinol complexes were found to be at around 620 nm compared to 505 nm for the respective quinolinol complexes. Unfortunately, preliminary spectrofluorimetric analytical figures of merit revealed that the detection limits of the new acridinol metal complexes were one and a half orders of magnitude poorer than those attained with the corresponding quinolinol ligand. However, in contrast to 8-quinolinol-5-sulphonic acid, the 4-acridinol-1-sulphonic acid ligand showed considerable selectivity for magnesium(II) and zinc(II) over aluminium(III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA–didodecyldimethylammonium (DNA–DDDA) electrostatic complex was prepared and characterized through Fourier transformation infrared (FT-IR), 1H NMR and circular dichroism (CD) spectroscopy. When the dye molecule aqueous solutions were used as the subphase, the interaction between three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine tetra(p-toluenesulfonate) (TMPyP) and the complex at air/solution interface were investigated through the surface pressure–area (π–A) isotherms, Brewster angle microscopy and UV-Vis spectroscopy, respectively. Our investigation indicates that the interaction capabilities of the three dyes to DNA–DDDA complex are different and present an order of TMPyP>AO>EB. For the interaction forms, we believe that TMPyP intercalates into the double helix of DNA, and AO adsorbs onto the surface of the DNA. As for EB, the measured signal is too weak to give a definite interaction form in the present experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile, two-step method for chemically attaching single-stranded DNA to graphitic surfaces, represented here by carbon nanotubes, is reported. In the first step, an azide-containing compound, N-5-azido-nitrobenzoyloxy succinimide (ANB-NOS), is used to form photo-adducts on the graphitic surfaces in a solid-state photochemical reaction, resulting in active ester groups being oriented for the subsequent reactions. In the second step, pre-synthesized DNA strands bearing a terminal amine group are coupled in an aqueous solution with the active esters on the photo-adducts. The versatility of the method is demonstrated by attaching pre-synthesized DNA to surfaces of carbon nanotubes in two platforms—as vertically-aligned multi-walled carbon nanotubes on a solid support and as tangled single-walled carbon nanotubes in mats. The reaction products at various stages were characterized by x-ray photoelectron spectroscopy. Two different assays were used to check that the DNA strands attached to the carbon nanotubes were able to bind their partner strands with complementary base sequences. The first assay, using partner DNA strands tethered to gold nanoparticles, enabled the sites of DNA attachment to the carbon nanotubes to be identified in TEM images. The second assay, using radioactively labelled partner DNA strands, quantified the density of functional DNA strands attached to the carbon nanotubes. The diversity of potential applications for these DNA-modified carbon-nanotube platforms is exemplified here by the successful use of a DNA-modified single-walled carbon-nanotube mat as an electrode for the specific detection of metal ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel protein with anti-tumor activities named malanin was isolated and purified from an endemic plant in Yunnan and Guangxi provinces. Effects of copper ion, silver ion and calcium ion on malanin and apo-malanin fluorescence spectra were studied. The results showed that copper ion leads to obvious statistic quenching of malanin and apo-malanin fluorescence. The dissociation constant of them from malanin and apo-malanin were about 2.37×10-4 and 2.66×10-4 mol·L-1, respectively. The silver ion did not have quenching action on malanin fluorescence, but it had statistic quenching effect on apo-malanin fluorescence, and its dissociation constant was 2.37×10-4 mol·L-1. Calcium ion did not have quenching action on malanin and apo-malanin fluorescence. It plays an important role in keeping malanin natural conformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) can lead to cell death, genome instability and carcinogenesis. Immunofluorescence detection of phosphorylated histone variant H2AX (γ-H2AX) is a reliable and sensitive technique to monitor external beam IR-induced DSBs in peripheral blood lymphocytes (PBL). Here, we investigated whether γ-H2AX could be used as an in vivo marker to assess normal tissue toxicity after extended internal irradiation with (177)Lu-DOTA-octreotate peptide receptor radionuclide therapy (LuTate PRRT) of neuroendocrine tumors.