5 resultados para Toxicity test

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing water quality guidelines for Antarctic marine environments requires understanding the sensitivity of local biota to contaminant exposure. Antarctic invertebrates have shown slower contaminant responses in previous experiments compared to temperate and tropical species in standard toxicity tests. Consequently, test methods which take into account environmental conditions and biological characteristics of cold climate species need to be developed. This study investigated the effects of five metals on the survival of a common Antarctic amphipod, Orchomenella pinguides. Multiple observations assessing mortality to metal exposure were made over the 30 days exposure period. Traditional toxicity tests with quantal data sets are analysed using methods such as maximum likelihood regression (probit analysis) and Spearman–Kärber which treat individual time period endpoints independently. A new statistical model was developed to integrate the time-series concentration–response data obtained in this study. Grouped survival data were modelled using a generalized additive mixed model (GAMM) which incorporates all the data obtained from multiple observation times to derive time integrated point estimates. The sensitivity of the amphipod, O. pinguides, to metals increased with increasing exposure time. Response times varied for different metals with amphipods responding faster to copper than to cadmium, lead or zinc. As indicated by 30 days lethal concentration (LC50) estimates, copper was the most toxic metal (31 µg/L), followed by cadmium (168 µg/L), lead (256 µg/L) and zinc (822 µg/L). Nickel exposure (up to 1.12 mg/L) did not affect amphipod survival. Using longer exposure durations and utilising the GAMM model provides an improved methodology for assessing sensitivities of slow responding Antarctic marine invertebrates to contaminants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an increase in use of nanoparticles (NPs) in day to day products, these particles eventually enter the wastewater treatment plant and get removed from the effluent while getting accumulated in the sludge at ever increasing concentrations. These NPs have a potential for causing inhibition in sludge digestion processes. Therefore, this research focused on the effects of cerium (IV) oxide (CeO2) and zinc oxide (ZnO) NPs on biogas production from sludge. The inhibition effects were investigated by studying toxicity of the said NPs on Escherichia coli. The results showed that CeO2 and ZnO NPs showed some degree of inhibition in biogas production with 65.3% biogas reduction at ZnO NPs at 1000 mg/L concentration. Conversely, CeO2 at low concentration of 10 mg/L lead to an increase biogas generation by 11%. The tolerable exposure concentrations for ZnO were determined to be 100 and 500 mg/L, where the system could overcome the inhibition effect after 14 days of incubation. The bacterial toxicity test showed that both nanoparticles were toxic for bacteria leading to biogas reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Annual Ryegrass Toxicity (ARGT) is a potentially lethal disease affecting livestock grazing on pastures or consuming fodder that include annual ryegrass (Lolium rigidum) contaminated with corynetoxins. The corynetoxins (CTs), among the most lethal toxins produced in nature, are produced by the bacterium Rathayibacter toxicus that uses a nematode vector to attach to and infect the seedheads of L.rigidum. There is little known of the factors that control toxin production. Several studies have speculated that a bacteriophage specific to R.toxicus may be implicated in CT production. We have developed a PCR-based assay to test for both bacterium and phage in ryegrass material and results indicate that there is a correlation between phage and bacterial presence in all toxic ryegrass samples tested so far. This PCR-based technique may ultimately allow for a rapid, high-throughput screening assay to identify potentially toxic pastures and feed in the field. Currently, ~80% of the 45 Kb genome has been sequenced an investigation to further elucidate its potential role in toxin production.Furthermore, specific alterations in gene expression as a result of exposure to CTs or the closely related tunicamycins (TMs), which are commercially available and considered biologically indistinguishable from CTs, will be evaluated for use as biomarkers of exposure. The effects of both toxins will be analysed in vitro using a rat hepatocyte cell line and screened on a low-density DNA micro array “CT-Chip” that contains <100 selected rat hepatic genes. The results are expected to further define the bioequivalence of CTs and TMs and to identify levels of exposure that are related to specific toxic effects or have no adverse effect on livestock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of increased trophic complexity, through the addition of predatory notonectids (Anisops deanei), on temporary pond microcosms used for aquatic toxicity testing were studied. Replicate microcosms were established using sediment from a dried temporary pond, and treated with one of four concentrations of the organochlorine pesticide endosulfan (0, 1, 10 or 50 μg/L), in the presence or absence of six A. deanei. The tanks were sampled regularly for nine weeks following the addition of the predators and the entire contents of each tank counted after 12 weeks. Analysis using non-metric multidimensional scaling (MDS) and non-parametric MANOVA showed that both Anisops and endosulfan at concentrations >10 μg/L significantly altered community structure. However, an interaction between the effects of Anisops and the effects of endosulfan was not detected. The addition of Anisops did not increase the variability of response and thus did not reduce the sensitivity of the test method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Aquatic nanotoxicologists and ecotoxicologists have begun to identify the unique properties of the nanomaterials (NMs) that potentially affect the health of wildlife. In this review the scientific aims are to discuss the main challenges nanotoxicologists currently face in aquatic toxicity testing, including the transformations of NMs in aquatic test media (dissolution, aggregation and small molecule interactions), and modes of NM interference (optical interference, adsorption to assay components and generation of reactive oxygen species) on common toxicity assays. Three of the major OECD (Organisation for Economic Co-operation and Development) priority materials, titanium dioxide (TiO2), zinc oxide (ZnO) and silver (Ag) NMs, studied recently by the Natural Sciences and Engineering Research Council of Canada (NSERC), National Research Council of Canada (NRC) and the Business Development Bank of Canada (BDC) Nanotechnology Initiative (NNBNI), a Canadian consortium, have been identified to cause both bulk effect, dissolution-based (i.e. free metal), or NM-specific toxicity in aquatic organisms. TiO2 NMs are most toxic to algae, with toxicity being NM size-dependent and principally associated with binding of the materials to the organism. Conversely, dissolution of Zn and Ag NMs and the subsequent release of their ionic metal counterparts appear to represent the primary mode of toxicity to aquatic organisms for these NMs. In recent years, our understanding of the toxicological properties of these specific OECD relevant materials has increased significantly. Specifically, researchers have begun to alter their experimental design to identify the different behaviour of these materials as colloids and, by introducing appropriate controls and NM characterisation, aquatic nanotoxicologists are now beginning to possess a clearer understanding of the chemical and physical properties of these materials in solution, and how these materials may interact with organisms. Arming nanotoxicologists with this understanding, combined with knowledge of the physics, chemistry and biology of these materials is essential for maintaining the accuracy of all future toxicological assessments.