61 resultados para Simulated annealing

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simulation optimization of a real scheduling problem in industry, simulated annealing is introduced for this purpose.  Investigation is performed into the practicality of using simulated annealing to produce high quality schedules.  Results on the solution quality and computational effort show the inherent properties of the simulated annealing.  It is shown that when using this method, high quality schedules can be produced within reasonable time contraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims at developing a new criterion for quantitative assessment of prediction intervals. The proposed criterion is developed based on both key measures related to quality of prediction intervals: length and coverage probability. This criterion is applied as a cost function for optimizing prediction intervals constructed using delta technique for neural network model. Optimization seeks out to minimize length of prediction intervals without compromising their coverage probability. Simulated Annealing method is employed for readjusting neural network parameters for minimization of the new cost function. To further ameliorate search efficiency of the optimization method, parameters of the network trained using weight decay method are considered as the initial set in Simulated Annealing algorithm. Implementation of the proposed method for a real world case study shows length and coverage probability of constructed prediction intervals are better than those constructed using traditional techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the single machine job shop scheduling problem is studied with the objectives of minimizing the tardiness and the material cost of jobs. The simultaneous consideration of these objectives is the multi-criteria optimization problem under study. A metaheuristic procedure based on simulated annealing is proposed to find the approximate Pareto optimal (non-dominated) solutions. The two objectives are combined in one composite utility function based on the decision maker’s interest in having a schedule with weighted combination. In view of the unknown nature of the weights for the defined objectives, a priori approach is applied to search for the non-dominated set of solutions based on the Pareto dominance. The obtained solutions set is presented to the decision maker to choose the best solution according to his preferences. The performance of the algorithm is evaluated in terms of the number of non-dominated schedules generated and the proximity of the obtained non-dominated front to the true Pareto front. Results show that the produced solutions do not differ significantly from the optimal solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hybrid method for Maximum Power Point Tracking (MPPT) of a Photovoltaic (PV) system which experiences non-uniform environmental conditions or partial shading conditions. The hybrid method combines two simple techniques with complementary strengths in achieving Global MPPT. Simulated Annealing (SA) has only recently been applied to PV MPPT and is very effective at locating global maxima with limited implementation complexity. Perturb and Observe (P&O) is a very common technique which provides continuous tracking of the MPP in a simple and easy to implement manner. The P&O method is generally incapable of locating global maxima, and the SA based method is unable to perform continuous searching. By merging these techniques in a hybrid MPPT method consisting of a global searching stage and a local searching stage, the tracking performance is improved compared to what each technique could achieve independently. Simulation results are presented to demonstrate the effectiveness of the proposed hybrid technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a simulated annealing (SA)-based global maximum power point tracking (GMPPT) technique designed for photovoltaic (PV) systems which experience partial shading conditions (PSC). The proposed technique is compared with the common perturb and observe MPPT technique and the particle swarm optimization method for GMPPT. The performance is assessed by considering the time taken to converge and the number of sample cases where the technique converges to the GMPP. Simulation results indicate the improved performance of the SA-based GMPPT algorithm, with arbitrarily selected parameters, in tracking to the global maxima in a multiple module PV system which experiences PSC. Experimental validation of the technique is presented based on PV modules that experience nonuniform environmental conditions. Additionally, studies regarding the influence of the key parameters of the SA-based algorithm are described. Simulation and experimental results verify the effectiveness of the proposed GMPPT method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides a procedure to address all three phases of the design for cellular manufacturing namely parts/machines grouping, intra-cell and inter-cell layout designs concurrently. It provides a platform to investigate the impact of the cell formation method on intracell and inter-cell layout designs and vice versa by generating multiple efficient layout designs for different cell partitioning strategies. This approach enables the decision maker to have wider choices with regard to the different number of cells and to assess various criteria such as travelling cost, duplication of machines, space requirement against each alternative. The performance of the model is demonstrated by applying it to an example selected from literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short-term load forecasting is fundamental for the reliable and efficient operation of power systems. Despite its importance, accurate prediction of loads is problematic and far remote. Often uncertainties significantly degrade performance of load forecasting models. Besides, there is no index available indicating reliability of predicted values. The objective of this study is to construct prediction intervals for future loads instead of forecasting their exact values. The delta technique is applied for constructing prediction intervals for outcomes of neural network models. Some statistical measures are developed for quantitative and comprehensive evaluation of prediction intervals. According to these measures, a new cost function is designed for shortening length of prediction intervals without compromising their coverage probability. Simulated annealing is used for minimization of this cost function and adjustment of neural network parameters. Demonstrated results clearly show that the proposed methods for constructing prediction interval outperforms the traditional delta technique. Besides, it yields prediction intervals that are practically more reliable and useful than exact point predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bootstrap method is one of the most widely used methods in literature for construction of confidence and prediction intervals. This paper proposes a new method for improving the quality of bootstrap-based prediction intervals. The core of the proposed method is a prediction interval-based cost function, which is used for training neural networks. A simulated annealing method is applied for minimization of the cost function and neural network parameter adjustment. The developed neural networks are then used for estimation of the target variance. Through experiments and simulations it is shown that the proposed method can be used to construct better quality bootstrap-based prediction intervals. The optimized prediction intervals have narrower widths with a greater coverage probability compared to traditional bootstrap-based prediction intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferring transcriptional regulatory networks from high-throughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed TReNGO (Transcriptional Regulatory Networks reconstruction based on Global Optimization), a global and threshold-free algorithm with simulated annealing for inferring regulatory networks by the integration of ChIP-chip and expression data. Superior to existing methods, TReNGO was expected to find the optimal structure of transcriptional regulatory networks without any arbitrary thresholds or predetermined number of transcriptional modules (TMs). TReNGO was applied to both synthetic data and real yeast data in the rapamycin response. In these applications, we demonstrated an improved functional coherence of TMs and TF (transcription factor)- target predictions by TReNGO when compared to GRAM, COGRIM or to analyzing ChIP-chip data alone. We also demonstrated the ability of TReNGO to discover unexpected biological processes that TFs may be involved in and to also identify interesting novel combinations of TFs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes an innovative optimized parametric method for construction of prediction intervals (PIs) for uncertainty quantification. The mean-variance estimation (MVE) method employs two separate neural network (NN) models to estimate the mean and variance of targets. A new training method is developed in this study that adjusts parameters of NN models through minimization of a PI-based cost functions. A simulated annealing method is applied for minimization of the nonlinear non-differentiable cost function. The performance of the proposed method for PI construction is examined using monthly data sets taken from a wind farm in Australia. PIs for the wind farm power generation are constructed with five confidence levels between 50% and 90%. Demonstrated results indicate that valid PIs constructed using the optimized MVE method have a quality much better than the traditional MVE-based PIs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, prediction interval (PI)-based modelling techniques are introduced and applied to capture the nonlinear dynamics of a polystyrene batch reactor system. Traditional NN models are developed using experimental datasets with and without disturbances. Simulation results indicate that traditional NNs cannot properly handle disturbances in reactor data and demonstrate a poor forecasting performance, with an average MAPE of 22% in the presence of disturbances. The lower upper bound estimation (LUBE) method is applied for the construction of PIs to quantify uncertainties associated with forecasts. The simulated annealing optimization technique is employed to adjust NN parameters for minimization of an innovative PI-based cost function. The simulation results reveal that the LUBE method generates quality PIs without requiring prohibitive computations. As both calibration and sharpness of PIs are practically and theoretically satisfactory, the constructed PIs can be used as part of the decision-making and control process of polymerization reactors. © 2014 The Institution of Chemical Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we investigate the camera network placement problem for target coverage in manufacturing workplaces. The problem is formulated to find the minimum number of cameras of different types and their best configurations to maximise the coverage of the monitored workplace such that the given set of target points of interest are each k-covered with a predefined minimum spatial resolution. Since the problem is NP-complete, and even NP-hard to approximate, a novel method based on Simulated Annealing is presented to solve the optimisation problem. A new neighbourhood generation function is proposed to handle the discrete nature of the problem. The visual coverage is modelled using realistic and coherent assumptions of camera intrinsic and extrinsic parameters making it suitable for many real world camera based applications. Task-specific quality of coverage measure is proposed to assist selecting the best among the set of camera network placements with equal coverage. A 3D CAD of the monitored space is used to examine physical occlusions of target points. The results show the accuracy, efficiency and scalability of the presented solution method; which can be applied effectively in the design of practical camera networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contrast to point forecast, prediction interval-based neural network offers itself as an effective tool to quantify the uncertainty and disturbances that associated with process data. However, single best neural network (NN) does not always guarantee to predict better quality of forecast for different data sets or a whole range of data set. Literature reported that ensemble of NNs using forecast combination produces stable and consistence forecast than single best NN. In this work, a NNs ensemble procedure is introduced to construct better quality of Pis. Weighted averaging forecasts combination mechanism is employed to combine the Pi-based forecast. As the key contribution of this paper, a new Pi-based cost function is proposed to optimize the individual weights for NN in combination process. An optimization algorithm, named simulated annealing (SA) is used to minimize the PI-based cost function. Finally, the proposed method is examined in two different case studies and compared the results with the individual best NNs and available simple averaging Pis aggregating method. Simulation results demonstrated that the proposed method improved the quality of Pis than individual best NNs and simple averaging ensemble method.