5 resultados para Rugosity

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The meiofauna of a mangrove forest in the River Barwon estuary was studied by means of surveys and field experiments. Distinctive assemblages of meiofauna were described from the sediment and pneumatophores of the ecosystem. Fine resolution of phytal habitats was demonstrated, and particular assemblages of meiofauna were characteristic within habitat provided by dominant epibionts. Distribution of the meiofauna within leaf litter revealed high turnover rates of nematodes, and some factors controlling detrital assemblages were assessed. The vertical profile of sedimentary meiofauna was examined, and changes in abundance were related to the tychopelagic habit of many taxa at high tide. Dispersal within the water column was confirmed by pelagic trapping, and colonisation of mimic pneumatophores was investigated. The amount of algal cover, effects of grazing by gastropods, and rugosity of the colonised surface were shown to influence meiofauna colonisation of mimic pneumatophores. Establishment and persistence of patchy distributions of meiofauna at scales of less than 10 m in an intertidal environment was demonstrated, and it was concluded that this was due to the dynamic nature of assemblages rather than their integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improved access to multibeam sonar and underwater video technology is enabling scientists to use spatially-explicit, predictive modelling to improve our understanding of marine ecosystems. With the growing number of modelling approaches available, knowledge of the relative performance of different models in the marine environment is required. Habitat suitability of 5 demersal fish taxa in Discovery Bay, south-east Australia, were modelled using 10 presence-only algorithms: BIOCLIM, DOMAIN, ENFA (distance geometric mean [GM], distance harmonic mean [HM], median [M], area-adjusted median [Ma], median + extremum [Me], area-adjusted median + extremum [Mae] and minimum distance [Min]), and MAXENT. Model performance was assessed using kappa and area under curve (AUC) of the receiver operator characteristic. The influence of spatial range (area of occupancy) and environmental niches (marginality and tolerance) on modelling performance were also tested. MAXENT generally performed best, followed by ENFA-GM and -HM, DOMAIN, BIOCLIM, ENFA-M, -Min, -Ma, -Mae and -Me algorithms. Fish with clearly definable niches (i.e. high marginality) were most accurately modelled. Generally, Euclidean distance to nearest reef, HSI-b (backscatter), rugosity and maximum curvature were the most important variables in determining suitable habitat for the 5 demersal fish taxa investigated. This comparative study encourages ongoing use of presence-only approaches, particularly MAXENT, in modelling suitable habitat for demersal marine fishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the use of using remotely sensed observation and full coverage hydroacoustic datasets to quantify habitat suitability for a marine demersal fish, the blue-throated wrasse. Because of issues surrounding the detection of species using remotely sensed video techniques, the application of presence-only techniques are well suited for modeling demersal fish habitat suitability. Ecological-Niche Factor Analysis is used to compare analyses conducted using seafloor variables derived from hydroacoustics at three spatial scales; fine (56.25 m2), medium (506.25 m2) and coarse (2756.25 m2), to determine which spatial scale was most influential in predicting blue-throated wrasse habitat suitability. The coarse scale model was found to have the best predictive capabilities with a Boyce Index of 0.80±0.26. The global marginality and specialization values indicated that, irrespective of spatial scale, blue-throated wrasse prefer seafloor characteristics that are different to the mean available within the study site, but exhibit a relatively wide niche. Although variable importance varied over the three spatial scale models, blue-throated wrasse showed a strong preference for regions of shallow water, close to reef, with high rugosity and maximum curvature and low HSI-B values. Generally the spatial patterns in habitat suitability were well represented in the Marine National Park compared to adjacent waters. However, some significant differences in spatial patterns were observed. Interspersion and Juxtaposition Indexes for unsuitable and highly suitable habitat were significantly smaller inside the Marine National Park, while the Mean Shape Index of unsuitable habitat in the Marine National Park was significantly larger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we evaluated the potential of using bathymetric Light Detection and Ranging (LiDAR) to characterise shallow water (<30 m) benthic habitats of high energy subtidal coastal environments. Habitat classification, quantifying benthic substrata and macroalgal communities, was achieved in this study with the application of LiDAR and underwater video groundtruth data using automated classification techniques. Bathymetry and reflectance datasets were used to produce secondary terrain derivative surfaces (e.g., rugosity, aspect) that were assumed to influence benthic patterns observed. An automated decision tree classification approach using the Quick Unbiased Efficient Statistical Tree (QUEST) was applied to produce substrata, biological and canopy structure habitat maps of the study area. Error assessment indicated that habitat maps produced were primarily accurate (>70%), with varying results for the classification of individual habitat classes; for instance, producer accuracy for mixed brown algae and sediment substrata, was 74% and 93%, respectively. LiDAR was also successful for differentiating canopy structure of macroalgae communities (i.e., canopy structure classification), such as canopy forming kelp versus erect fine branching algae. In conclusion, habitat characterisation using bathymetric LiDAR provides a unique potential to collect baseline information about biological assemblages and, hence, potential reef connectivity over large areas beyond the range of direct observation. This research contributes a new perspective for assessing the structure of subtidal coastal ecosystems, providing a novel tool for the research and management of such highly dynamic marine environments. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defining the geographic extent of suitable fishing grounds at a scale relevant to resource exploitation for commercial benthic species can be problematic. Bathymetric light detection and ranging (LiDAR) systems provide an opportunity to enhance ecosystem-based fisheries management strategies for coastally distributed benthic fisheries. In this study we define the spatial extent of suitable fishing grounds for the blacklip abalone (Haliotis rubra) along 200 linear kilometers of coastal waters for the first time, demonstrating the potential for integration of remotely-sensed data with commercial catch information. Variables representing seafloor structure, generated from airborne bathymetric LiDAR were combined with spatially-explicit fishing event data, to characterize the geographic footprint of the western Victorian abalone fishery, in south-east Australia. A MaxEnt modeling approach determined that bathymetry, rugosity and complexity were the three most important predictors in defining suitable fishing grounds (AUC = 0.89). Suitable fishing grounds predicted by the model showed a good relationship with catch statistics within each sub-zone of the fishery, suggesting that model outputs may be a useful surrogate for potential catch.