7 resultados para Radiative transfer

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An efficient numerical technique for modeling biological tissues using the radiative transfer equation is presented. Time dependence of the transient radiative transfer equation is approximated using Laguerre expansion. Azimuthal angle is discretized using the discrete ordinates method and the resulting set of ordinary differential equations is solved using the Runge-Kutta-Felhberg method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An efficient algorithm for solving the transient radiative transfer equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. The Runge–Kutta– Fehlberg method is used to solve the intensity. The discrete ordinates method is used to discretize with respect to azimuthal and zenith angles. This method offers the advantages of representing the intensity with a high accuracy using only a few Laguerre polynomials, and straightforward extension to inhomogeneous media. Also, this formulation can be easily extended for solving the 2-D and 3-D transient radiative transfer equations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110–1050 °C and a fluidising number range of 1.18–4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel combined theoretical and computational model is developed to simulate the heat and mass transfer between a fluidised bed and a workpiece surface, and within the workpiece by considering the fluidised bed as a medium consisting of a double-particle layer and an even porous layer. The heat and mass-transfer flux from the fluidised bed to the workpiece surface is contributed by dense and bubble phases, respectively. The convective heat and mass transfer is simulated by analysing the gas dynamics in the fluidised bed, while radiative heat transfer is modelled by simulating photon emission in a three-dimensional particle array. The simulation shows that convection is approximately constant, while radiation contributes significantly to the heat transfer. The heat-transfer coefficient on an immersed surface near particles is about 6–10 times that on other areas. The transient heat and mass-transfer coefficient, heat and mass-transfer flux on any surface of the workpiece, transient temperature and carbon distributions at any position of the workpiece during the metal carburising process are studied with the simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle behaviour is studied by the analysis of particle images taken with a high speed CCD digital video camera. The comparison of particle dynamics is performed for the fluidised beds without part, with single part and with multi-parts. The results show that there are significant differences in particle behaviours both in different beds and at different locations at part surfaces. The total and radiative heat transfer coefficients at different surfaces of a metallic component in a high temperature fluidised bed are measured by a heat transfer probe developed in the present work. The principle of the heat transfer probe is to measure the change in temperature of the heated metallic piece with time and, then, to extract the heat flux and heat transfer coefficients. The structure of the probe is optimized with numerical simulation of energy conservation for measuring the heat transfer coefficient of 150~600 W/m2 K. The relationship between the particle dynamics and the heat transfer is analysed to form the basis for future more rational designs of fluidised beds as well as for improved quality control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle behaviour in a heat treatment fluidised bed was studied by the analysis of particle images taken with a high speed CCD digital video camera. The comparison of particle dynamics was performed for the fluidised beds without part, with single part and with multi-parts. The results show that there are significant differences in particle behaviours both in different beds and at different locations of part surfaces. The total and radiative heat transfer coefficients at different surfaces of a metallic part in a fluidised bed were measured by a heat transfer probe developed in the present work. The structure of the probe was optimized with numerical simulation of energy conservation for measuring the heat transfer coefficient of 150-600 W/m2K. The relationship between the particle dynamics and the heat transfer was analysed to form the basis for future more rational designs of fluidised beds as well as for improved quality control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a novel computational technique called Parameterized Perturbation Method (PPM) is used to obtain the solutions of nonlinear fundamental heat conduction equations. Three well known problems in the area of heat transfer are addressed to be solved. An analytical investigation is carried out for: (a) the temperature distribution in a fin with a temperature-dependent thermal conductivity, (b) the cooling of the lumped system with variable specific heat, and (c) the temperature distribution of a convective-radiative fin. The validity of the results of PPM solution was verified via comparison with numerical results obtained using a fourth order Runge-Kutta method. These comparisons revealed that PPM is a powerful approach for solving these problems. Also, the results showed that the main attributions of this method are very straightforward calculations and low computational burden compared to previous analytical and numerical approaches.