28 resultados para Precursor eritróide

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease is characterized by the accumulation of amyloid-ß peptide, which is cleaved from the amyloid-ß precursor protein (APP). Reduction in levels of the potentially toxic amyloid-ß has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-ß in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – Sir George Simpson, the Governor of the Hudson's Bay Company (HBC) from 1821 to his death in 1860, was the subject of numerous biographical works that described various facets of the man including his managerial abilities, literary prowess, physical stamina, abundant energy, extensive art collection and ethnological specimens. Two related aspects of his outstanding management style have been overlooked: the genesis of his management style and where it can be placed in the evolution of management practices during the 19th century.

Design/methodology/approach – Primary data from the Hudson's Bay Company archives plus secondary sources.

Findings – Simpson's management abilities came from his grammar school education and his apprenticeship to a counting house. More importantly, it can be attributed to his association with his mentor Andrew Wedderburn, his dedication to the HBC, and his high level of physical and intellectual energy. His information intensive management style was also a significant precursor to systematic management, which occurred later in the 19th century.

Research limitations/implications – Future research should examine other examples of the evolution of management during the 19th century, particularly the transition from sub-unit accountability to systematic management.

Originality/value – The paper emphasizes the importance of managers in making management systems work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from epidemiologic studies that central obesity precedes future metabolic change and does not occur concurrently with the appearance of the blood pressure, glucose, and lipid abnormalities that characterize the metabolic syndrome (MetS) has been lacking. Longitudinal surveys were conducted in Mauritius in 1987, 1992, and 1998, and in Australia in 2000 and 2005 (AusDiab). This analysis included men and women (aged 25 years) in three cohorts: AusDiab 2000–2005 (n = 5,039), Mauritius 1987–1992 (n = 2,849), and Mauritius 1987–1998 (n = 1,999). MetS components included waist circumference, systolic blood pressure, fasting and 2-h postload plasma glucose, high-density lipoprotein (HDL) cholesterol, triglycerides, and homeostasis model assessment of insulin sensitivity (HOMA-S) (representing insulin sensitivity). Linear regression was used to determine which baseline components predicted deterioration in other MetS components over 5 years in AusDiab and 5 and 11 years in Mauritius, adjusted for age, sex, and ethnic group. Baseline waist circumference predicted deterioration (P < 0.01) in four of the other six MetS variables tested in AusDiab, five of six in Mauritius 1987–1992, and four of six in Mauritius 1987–1998. In contrast, an increase in waist circumference between baseline and follow-up was only predicted by insulin sensitivity (HOMA-S) at baseline, and only in one of the three cohorts. These results suggest that central obesity plays a central role in the development of the MetS and appears to precede the appearance of the other MetS components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alzheimer’s disease Aβ peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Aβ and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-β (Aβ), the fibrillar prion peptides PrP106–126 and PrP178–193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. Specificity was shown by a lack of change to amyloid precursor-like protein 1, τ-1 and cellular prion protein (PrPc) levels. APP and APLP2 levels were elevated only in cultures exposed to fibrillar peptides as assessed by electron microscopy and not in cultures treated with non-fibrillogenic peptide variants or aggregated lipoprotein. We found that PrP106–126 and the non-toxic but fibril-forming PrP178–193 increased APP levels in cultures derived from both wild-type and PrPc-deficient mice indicating that fibrillar peptides up-regulate APP through a non-cytotoxic mechanism and irrespective of parental protein expression. Fibrillar PrP106–126 and Aβ peptides bound recombinant APP and APLP2 suggesting the accumulation of these proteins was mediated by direct binding to the fibrillated peptide. This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18–146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for exvivo expansion of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Brain glutathione levels are decreased in schizophrenia, a disorder that often is chronic and refractory to treatment. N-acetyl cysteine (NAC) increases brain glutathione in rodents. This study was conducted to evaluate the safety and effectiveness of oral NAC (1 g orally twice daily [b.i.d.]) as an add-on to maintenance medication for the treatment of chronic schizophrenia over a 24-week period.

Methods:
A randomized, multicenter, double-blind, placebo-controlled study. The primary readout was change from baseline on the Positive and Negative Symptoms Scale (PANSS) and its components. Secondary readouts included the Clinical Global Impression (CGI) Severity and Improvement scales, as well as general functioning and extrapyramidal rating scales. Changes following a 4-week treatment discontinuation were evaluated. One hundred forty people with chronic schizophrenia on maintenance antipsychotic medication were randomized; 84 completed treatment.

Results: Intent-to-treat analysis revealed that subjects treated with NAC improved more than placebo-treated subjects over the study period in PANSS total [5.97 (10.44, 1.51), p .009], PANSS negative [mean difference 1.83 (95% confidence interval: 3.33, .32), p .018], and PANSS general [2.79 (5.38, .20), p .035], CGI-Severity (CGI-S) [.26 (.44,.08), p .004], and CGI-Improvement (CGI-I) [.22 (.41, .03), p .025] scores. No significant change on the PANSS positive subscale was seen. N-acetyl cysteine treatment also was associated with an improvement in akathisia (p .022). Effect sizes at end point were consistent with moderate benefits.

Conclusions: These data suggest that adjunctive NAC has potential as a safe and moderately effective augmentation strategy for chronic schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Getting intimate: A 3D interconnected Bi0.5Sr 0.5FeO3-ð (BSF)-Ag electrocatalyst is prepared from a BSF-AgNO3 core-shell precursor in one step. The nanometer-sized Ag enhances the sintering process, enabling an optimum cathode microstructure and good cathode-to-electrolyte attachment upon firing at 850°C. A solid-oxide fuel cell based on this cathode shows a near 100% peak power density enhancement at 550°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a facile method for controlling the morphology and porosity of porous siloxane membranes through manipulation of the water content of precursor microemulsions. The polymerizable microemulsion precursors consisted of a methacrylate-terminated siloxane macromonomer (MTSM) as the oil phase, nonionic surfactant (Teric G9A8), water, and cosurfactant (isopropanol). Photo-polymerization of the oil phase in the parent microemulsion solutions resulted in polymeric solids, and subsequent removal of the extractable components yielded porous PDMS membranes. The pre-cured parent microemulsion solutions and post-cured polymers were characterized by small angle X-ray scattering (SAXS) while the nanostructures of extracted porous polymer membranes were characterized by SAXS, scanning electron microscopy (SEM) and mercury porosimetry. The results indicated that nano- and micro-structures of the membranes could be modulated by the water content of the precursor microemulsions. Further, in situ photo-rheometry was used to follow the microemulsion polymerization process. The rate of polymerization and the mechanical properties of the resulting PDMS membranes also depend on the water content of precursor microemulsions. This study demonstrates a simple approach to the fabrication of a variety of novel porous PDMS membranes with controllable morphology and porosity.