56 resultados para Polystyrene

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polystyrene nanofibres were electrospun with the inclusion of cationic surfactants, dodecyltrimethylammonium bromide (DTAB) or tetrabutylammonium chloride (TBAC), in the polymer solution. A small amount of cationic surfactant effectively stopped the formation of beaded fibres during the electrospinning. The cationic surfactants were also found to improve the solution conductivity, but had no effect on the viscosity. Only DTAB had an effect on the surface tension of the polymer solution, the surface tension decreasing slightly with an increase in the concentration of DTAB.

The formation of beaded fibres was attributed to an insufficient stretch of the filaments during the whipping of the jet, due to a low charge density. Adding the cationic surfactants improved the net charge density that enhanced the whipping instability. The jet was stretched under stronger charge repulsion and at a higher speed, resulting in an exhaustion of the bead structure. In addition, a polymer/surfactant interaction was found in the polystyrene–DTAB solution system, while this interaction was not found in the polystyrene–TBAC system. The polymer/surfactant interaction led to the formation of thinner fibres than those formed in the absence of the interaction.

The effects of a non-ionic surfactant, Triton X-405, on the electrospun fibres were also studied. The addition of Triton X-405 did not eliminate the fibre beads, but reduced the bead numbers and changed the morphology. Triton X-405 slightly improved the solution conductivity, and had a minor effect on the surface tension, but no effect on the viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polystyrene behaviour in reversed phase high performance liquid chromatography was influenced mainly by the solvent system, but secondary affects were observed depending on the stationary phase. A variety of reversed phase columns were investigated using mobile phase combinations of dichlorom ethane-methanol, dichloromethane-acetonitrile, ethyl acetate-methanol and ethyl acetate-acetonitrile. Several different modes of behaviour were observed depending on the polymer solubility in the solvent system. In the dichloromethane-methanol solvent system, polymer-stationary phase interactions only occurred when the molecules had pore access. Retention of excluded polystyrene depended on the kinetics of precipitation and redissolution of the polymer. Peak splitting and band broadening occurred when the kinetics were slow and molecular weight separations were limited !o oligomers and polystyrenes lower than 5-10(4) dalton. Excellent molecular weight separations of polystyrenes were obtained using gradient elution reversed phase chromatography with a dichloromethane-acetonitrile mobile phase on C18 columns. The retention was based on polymer-stationary phase interactions regardless of the column pore size. Separations were obtained on large diameter pellicular adsorbents that were almost as good as those obtained on porous adsorbents, showing that pore access was not essential for the retention of high molecular weight polystyrenes. In the best example, the separation ranged from the monomer to 10(6) dalton in a single analysis. Very little adsorption of excluded polymers was observed on C8 or phenyl columns. Polystyrene molecular weight separations to 7-10(5) dalton were obtained in an ethyl acetate-acetonitrile solvent system on C18 columns. Adsorption was responsible for retention. When an ethyl acetate-methanol solvent system was used, no molecular weight separations were obtained because of complex peak splitting. Reversed phase chromatography was compared to size exclusion chromatography for the analysis of polydisperse polystyrenes. Similar results were obtained using both methods. However, the reversed phase method was less sensitive to concentration effects and gave better resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wetting behavior of water droplets was studied on tunable nanostructured polystyrene (PS) surfaces fabricated by temperature-induced capillary template wetting. The surface morphology of PS varied with the annealing temperature. Contact angle (CA) measurements showed that the wettability of polystyrene surfaces could be tuned from hydrophobic (CA = 104°) to superhydrophobic (CA = 161°) by rendering different morphologies, which could be explained by two distinct wetting modes, i.e., the Wenzel and Cassie–Baxter wetting state. Meanwhile, the critical annealing temperature inducing wetting transition between the Wenzel state and Cassie–Baxter state was obtained. This approach could be easily extended to produce superhydrophobic surfaces on other thermoplastic polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The separation of multi-walled carbon nanotubes (MWCNTs) and polystyrene microparticles using a dielectrophoresis (DEP) system is presented. The DEP system consists of arrays of parallel microelectrodes patterned on a glass substrate. The performance of the system is evaluated by means of numerical simulations. The MWCNTs demonstrate a positive DEP behaviour and can be trapped at the regions of high electric field. However, the polystyrene microparticles demonstrate a negative DEP behaviour at a certain range of frequencies and migrate to the regions of low electric field. Experiments are performed on the microparticles at the frequencies between 100 Hz and 1 MHz to estimate their crossover frequency and select the range of separation frequencies. Further, experiments are conducted at the obtained range of separation frequencies to separate the MWCNTs and polystyrene microparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated that polystyrene (PS) nanofibers having an ordered surface line texture can be produced on a large scale from a PS solution of acetone and N,N′-dimethylformamide (2/1, vol/vol) by a needleless electrospinning technique using a disc as fiber generator. The formation of the unusual surface feature was investigated and attributed to the voids formed on the surface of jets due to the fast evaporation of acetone at the early stage of electrospinning, and subsequent elongation and solidification turning the voids into ordered lines on fiber surface. In comparison with the nanofibers electrospun by a conventional needle electrospinning using the same solution, the disc electrospun fibers were finer with similar diameter distribution. The fiber production rate for the disc electrospinning was 62 times higher than that of the conventional electrospinning. Fourier transform infrared spectroscopy and X-ray diffraction measurements indicated that the PS nanofibers produced from the two electrospinning techniques showed no significant difference in chemical component, albeit slightly higher crystallinity in the disc spun nanofibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine polystyrene (PS) nanofibers were prepared via the simple electrospinning technique. Uniform and smooth PS nanofibers were obtained with adding the organic salt BTEAC into the PS solutions and adjusting the concentration of PS solutions. Without the addition of BTEAC, PS fibers with few beads could be achieved with a PS mass fraction of 20%, and the average diameter of the fibers was 280 nm. The addition of the organic salt BTEAC could lower the critical concentration for the fiber formation and reduce the amount of beads on the fibers. Unltrafine PS fibers without any beads were obtained with a PS mass fraction of 10% and an ionic salt mass fraction of 0.5%. The average diameter of the fiber was successfully reduced to 100 nm. The influence of the salt concentration on the morphology and diameter of the PS fibers was also investigated. The viscosity and surface tension changes were measured with changing the concentration of BTEAC. The results show that the changes were so small that these factors could be ignored. It was suggested that variations of the fiber diameter should be mainly resulted from the changes of conductivity and conformation of the polymer chain as the concentration of BTEAC is varied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of operating conditions such as initiator and monomer concentration as well as reactor temperature of polymerization reactors are studied in this work. A recently developed hybrid model for polystyrene batch reactor is utilized in simulation study. The simulation results reveal the sensitivity of polymer properties and monomer conversion to variation of process operating conditions. In the second phase of this study, the optimization problem involving minimum time optimal temperature policy is considered for control study. An advanced neural network-based model predictive controller (NN-MPC) is designed and tested online. The experimental studies reveal that the developed controller is able to track the optimal setpoint with a minor oscillation and overshoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of two advanced model based non-linear controllers is analyzed for the optimal setpoint tracking of free radical polymerization of styrene in batch reactors. Artificial neural network-based model predictive controller (NN-MPC) and generic model controller (GMC) are both applied for controlling the system. The recently developed hybrid model [1] as well as available literature models are utilized in the control study. The optimal minimum temperature profiles are determined based on Hamiltonian maximum principle. Different types of disturbances are artificially generated to examine the stability and robustness of the controllers. The experimental studies reveal that the performance of NN-MPC is superior over that of GMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the formation of polystyrene (PS) nanofibers during electrospinning process was investigated using a simple coagulation method. The fiber diameter, bead size and bead density of the PS nanofibers electrospun from the solutions with three different PS concentrations were studied. It revealed that the initial stage of electrospinning was responsible for fiber thinning, while the later stage is responsible for improving the fiber uniformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b- polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore£ the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b- POEOMA-b- PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of polymerization reactors is a challenging issue for researchers due to the complex reaction mechanisms. A lot of reactions occur simultaneously during polymerization. This leads to a polymerization system that is highly nonlinear in nature. In this work, a nonlinear advanced controller, named fuzzy logic controller (FLC), is developed for monitoring the batch free radical polymerization of polystyrene (PS) reactor. Temperature is used as an intermediate control variable to control polymer quality, because the products quality and quantity of polymer are directly depends on temperature. Different FLCs are developed through changing the number of fuzzy membership functions (MFs) for inputs and output. The final tuned FLC results are compared with the results of another advanced controller, named neural network based model predictive controller (NN-MPC). The simulation results reveal that the FLC performance is better than NN-MPC in terms of quantitative and qualitative performance criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, prediction interval (PI)-based modelling techniques are introduced and applied to capture the nonlinear dynamics of a polystyrene batch reactor system. Traditional NN models are developed using experimental datasets with and without disturbances. Simulation results indicate that traditional NNs cannot properly handle disturbances in reactor data and demonstrate a poor forecasting performance, with an average MAPE of 22% in the presence of disturbances. The lower upper bound estimation (LUBE) method is applied for the construction of PIs to quantify uncertainties associated with forecasts. The simulated annealing optimization technique is employed to adjust NN parameters for minimization of an innovative PI-based cost function. The simulation results reveal that the LUBE method generates quality PIs without requiring prohibitive computations. As both calibration and sharpness of PIs are practically and theoretically satisfactory, the constructed PIs can be used as part of the decision-making and control process of polymerization reactors. © 2014 The Institution of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride-grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration.