41 resultados para Plastics Biodegradation

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an automated trimming system of large glass fiber reinforced plastic (GFRP) using an omni-directional wheeled mobile robot (WMR) and its path control method. In trimming GFRP parts, much glass fiber and plastic powder dust occur and it becomes bad visible in environment. It is necessary to correct dead-reckoning errors of the WMR in order to control its moving path. We have discussed an external correction method of the dead-reckoning errors for the WMR using ultrasonic sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed.

Hydrogen peroxide–zinc (H2O2–Zn), the fungus – Aspergillus niger and the bacteria – Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus–bacteria combined with H2O2–Zn, the concentration range of BaP in the cultures was 30–120 mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12 d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10—200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: – The purpose of this paper is to document the progress made in a specified period and the experience of managers and staff in sustaining the high performance team approach in a plastics factory.

Design/methodology/approach: – Single-case analysis was conducted on data collected through semi-structured interviews and site observations made with two managers and one team of six in a multinational plastics manufacturer (Visy) headquartered in Australia.

Findings: – Based on the authors' experiences and literature review a successful high performance team requires clear targets and efficiency standards, communication, rules of behaviour, continual input of facts and feedback, and last but not least – recognition of successes.

Research limitations/implications: – The findings are based on observations and interviews conducted in one part of a multinational organization in Australia. No follow-up interviews could be undertaken to track the progress.

Originality/value: – No other similar study had been undertaken in this organisation documenting the experiences of a quality improvement team and its interactions with managers. The findings have practical implications for industrial and other kinds of organisations engaged in implementing quality improvements through enhanced teamwork.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data is a collection of experiments and characterization of samples of bio-renewable plastics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are known or suspected carcinogens or mutagens. Bioremediation has been used as a general way to eliminate them from the contaminated sites or aquifers, but their biodegradation is rather limited due to their low bioavailability because of their sparingly soluble nature. Surfactant-mediated biodegradation is a promising alternative. The presence of surfactants can increase the solubility of PAHs and hence potentially increase their bioavailability. However, inconclusive results have been reported on the effects of surfactant on the biodegradation of PAHs. In this work, surfactant-mediated biodegradation of PAHs is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pentachlorophenol (PCP) is a toxic chemical, often used in the formulation of pesticide, herbicide, anti fungal agent, bactericide and wood preservative. This study is aimed at evaluating the potential of membrane bioreactor (MBR) to treat PCP contaminated wastewater. Synthetic wastewater with COD of 600 mg/L was fed into the MBR at varied PCP loading rate of 12–40 mg/m3/d. A PCP removal rate of 99% and a COD removal rate of 95% were achieved at a hydraulic retention time of 12 hs and a mixed liquor suspended solids (MLSS) concentration of 10,000 mg/L. When sodium pentachlorophenol (NaPCP), which has higher solubility in water, was used in the second phase of the study, at loading rates varying from 20 to 200 mg/m3·d, the removal rate of NaPCP was higher than 99% and the removal rate of COD was more than 96%. It was also found that at higher biomass concentrations, biosorption played an important role besides the biodegradation process. Batch experiments conducted in this study revealed that the sorption capacity to be 0.63 (mg PCP/g biomass) and occurred rapidly within 60 min. This phenomenon could enhance the PCP degradation through increased contact between microorganism and PCP. Further, the membrane resistance was low (trans-membrane pressure of 14 kPa) even after more than 100 ds of operation. In addition, the toxic level of PCP in the influent could have induced the microorganisms to secrete more extra-cellular polymeric substances (EPS) for their protection, which in turn must have increased the viscosity of the mixed liquor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg alloy AZ31 is an attractive candidate for coronary artery stents, as it possesses excellent biocompatibility in human body and good mechanical properties. However, AZ31 magnesium alloys generally have poor corrosion resistance in the body environment. This paper reports on the early stages of an investigation into the corrosion mechanism and the morphology of corrosion of AZ31 in simulated body fluid (SBF). The investigation will also consider ways of improving corrosion resistance of this alloy in SBF through the use of ionic liquids. The results to date have shown that AZ31 suffers severe localized pitting corrosion in SBF. The pits mainly develop adjacent to the Al-Mn intermetallic second phase in the α matrix. Energy Dispersive X-Ray Spectroscopy results revealed the presence of Mg, O, Ca, and P in the layer of corrosion product. Treatment of the AZ31 alloy prior to corrosion testing in SBF with the ionic liquid trimethyl (butyl) phosphonium diphenyl phosphate (P1444DPP) produced some increase in the corrosion resistance of the alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report biorenewable plastics developed from natural resources such as cellulose, wool and microorganismsynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer [1-3]. Novel materials were prepared by blending these natural polymers in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride. Cellulose /PHBV blend materials were successfully prepared in this way. The ionic liquid was completely recycled with high yield and purity after the processing. The blend materials can be processed into different solid forms such as films, noodle-like fibers and bulk blocks. It was found that there exists hydrogen bonding interaction between the components which facilities the mixing of these polymers. The cellulose/PHBV blend materials all show phase-separated structure as revealed by micro ATR-FTIR imaging (Figure 1) and scanning electron microscopy (SEM). The PHBV domains of 6 - 8 µm are distributed in a cellulose matrix at high concentrations of cellulose while the blend materials with high PHBV concentrations exhibit multiphase morphologies, including beadlike PHBV microdomains in the range of 300-400 nm. The dispersion of PHBV in cellulose leads to significant improvement in hydrophobicity due to its beadlike structure. The blend materials represent a class of degradable plastics from natural bioresources using the ionic liquid green solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to understand the structure and biodegradation relationships of silk particles intended for targeted biomedical applications. Such a study is also useful in understanding structural remodelling of silk debris that may be generated from silk-based implants. Ultrafine silk particles were prepared using a combination of efficient wet-milling and spray-drying processes with no addition of chemicals other than those used in degumming. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy. Because of the rough morphology and the ultrafine size of the particles, degradation of silk particles by protease XIV was increased by about 3-fold compared to silk fibers. Upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolyzed residual macromolecules. A model of the biodegradation mechanism of silk particles was developed based on the experimental data. The model explains the process of disintegration of β-sheets, supported by quantitative secondary structural analysis and microscopic images. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel tri-block copolymer poly(oxopentanoate ethyl methacrylate)-block-poly(pyridyl disulfide ethyl acrylate)-block-poly(ethylene glycol acrylate) [poly(OEMA-b-PDEA-b-PEGA)], retaining active keto groups and pyridyl disulfide (PDS) side functionalities, was synthesized as a drug delivery vehicle using reversible addition-fragmentation chain transfer (RAFT) polymerization method. One mimic drug pyridine-2-thione (PT) was introduced into the monomer, PDEA for copolymerization. The other mimic drug O-benzylhydroxylamine (BHA) was conjugated with tri-block copolymer via efficient oxime coupling chemistry, followed by the attachment onto graphene via π-π stacking interaction to obtain a graphene/tri-block copolymer composite. 1H NMR, UV-vis absorption spectroscopy, fluorescence spectroscopy, gel permeation chromatography (GPC), atomic force microscope (AFM) and transmission electron microscope (TEM) were used to verify the successful step-wise preparation of the tri-block copolymer and drug loaded composite. In vitro release behaviors of BHA and PT from graphene/tri-block copolymer composite via dual drug release mechanisms were investigated. BHA can be released under acid environment, while PT will be released in the presence of reducing agents, such as dithiothreitol (DTT) or glutathione (GSH). It can be envisioned that this novel composite could be exploited as a novel intracellular drug delivery system via dual release mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic mulch films are widely used in agriculture to enhance crop production by suppressing weeds, conserving soil water and increasing soil temperature. The majority of plastic mulch films are however not biodegradable and are typically removed after each growing season. Recovery of these plastics from the soil is difficult and can affect successive crop yields while causing substantive cost to the environment and farmers. Due to increasingly stringent regulations regarding use of non-degradable plastic in agriculture they are likely to be phased out in the near future. In the past 10 years several classes of 'biodegradable' materials have been studied but most of these films are reported to be relatively weak in mechanical properties, not efficiently degradable and cost prohibitive.More recently, researchers have turned their attention to sprayable biodegradable polymer coatings for use on soils due to their easy application and versatility. The ability to mix natural additives, plasticizers and fillers to control and improve the mechanical and biodegradation properties of the core polymeric mulch film has been the driving force behind the development of these next generation sprayable polymeric mulch films.There have been many excellent review articles and papers written about polymeric mulch film, but the developing sprayable polymer systems have not been reviewed to the same extent. This paper focusses on the research progress in the area of biodegradable and sprayable polymer mulch film with emphasis on polymer formulations, properties and application. It also discusses current research to highlight the importance, potential benefits and future challenges in developing a cost effective biodegradable sprayable film for use in production agriculture.