6 resultados para PIGMENTS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Pal trs caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (lambda(max)) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitive-single cones of both species cut off wavelengths below 570-573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise lambda(max) of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy also varies between the two species and may reflect differences in their visual ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorophyll a and other photosynthetic pigments are used as indicators of phytoplankton biomass, composition and physiological state. Extraction and HPLC procedures were developed to analyse for chlorophyll and carotenoid pigments. The effect of the environment on pigment production must be quantified before the pigments can be used to accurately estimate biomass or quantitatively describe phytoplankton composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-brightness synchrotron X-rays together with precision achromatic focusing optics on beamline 7.3.3 at the Advanced Light Source have been applied for Laue microdiffraction analysis of mineralogical phases in Egyptian pigments. Although this task is usually performed using monochromatic X-ray diffraction, the Laue technique was both faster and more reliable for the present sample. In this approach, white-beam diffraction patterns are collected as the sample is raster scanned across the incident beam (0.8 µm × 0.8 µm). The complex Laue diffraction patterns arising from illumination of multiple grains are indexed using the white-beam crystallographic software package XMAS, enabling a mineralogical map as a function of sample position. This methodology has been applied to determine the mineralogy of colour pigments taken from the ancient Egyptian coffin of Tjeseb, a priestess of the Apis bull dating from the Third Intermediate to Late period, 25th Dynasty to early 26th Dynasty (747 to 600 BC). For all pigments, a ground layer of calcite and quartz was identified. For the blue pigment, cuprorivaite (CuCaSi4O10) was found to be the primary colouring agent with a grain size ranging from ∼10 to 50 µm. In the green and yellow samples, malachite [Cu2(OH)2CO3] and goethite [FeO(OH)] were identified, respectively. Grain sizes from these pigments were significantly smaller. It was possible to index some malachite grains up to ∼20 µm in size, while the majority of goethite grains displayed a nanocrystalline particle size. The inability to obtain a complete mineralogical map for goethite highlights the fact that the incident probe size is considerably larger than the grain size. This limit will continue to improve as the present trend is toward focusing optics approaching the diffraction limit (∼1000× smaller beam area).