16 resultados para P2X(7) receptor

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aimed to investigate the regulation of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) gene expression in primary skeletal muscle myotubes, derived from human donors, after exposure to globular adiponectin (gAd) and leptin. Research Methods and Procedures: Four distinct primary cell culture groups were established [ Lean, Obese, Diabetic, Weight Loss (Wt Loss); n = 7 in each] from rectus abdominus muscle biopsies obtained from surgical patients. Differentiated myotube cultures were exposed to gAd (0.1 mug/mL) or leptin (2.5 mug/mL) for 6 hours. AdipoR1 and AdipoR2 gene expression was measured by real-time polymerase chain reaction analysis. Results: AdipoR1 mRNA expression in skeletal muscle myotubes derived from Lean subjects (p < 0.05) was stimulated 1.8-fold and 2.5-fold with gAd and leptin, respectively. No increase in AdipoR1 gene expression was measured in myotubes derived from Obese, Diabetic, or Wt Loss subjects. AdipoR2 mRNA expression was unaltered after gAd and leptin exposure in all myotube groups. Discussion: Adiponectin and leptin are rapid and potent stimulators of AdipoR1 in myotubes derived from lean healthy individuals. This effect was abolished in myotubes derived from obese, obese diabetic subjects, and obese-prone individuals who had lost significant weight after bariatric surgery. The incapacity of skeletal muscle of obese and diabetic individuals to respond to exogenous adiponectin and leptin may be further suppressed as a result of impaired regulation of the AdipoR1 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms α, β/δ, and γ control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-α, -β/δ, and -γ. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-α, -β/δ, and -γ mRNA as well as the fiber type distribution of the PGC-1 and PPAR-α proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-α mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-α was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-α levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods: Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results: Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion: Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PPARGC1), a coactivator regulating the transcription of genes involved in oxidative metabolism, is downregulated in patients with type 2 diabetes and in their first-degree relatives. Whether this downregulation is a cause or effect of early aberrations in the development of insulin resistance, such as disturbances in fat metabolism, is unknown. We examined whether lipid-induced insulin resistance was associated with downregulation of expression of skeletal muscle genes involved in oxidative metabolism and mitochondrial biogenesis in humans.
Materials and methods Nine healthy lean male subjects underwent a 6-h hyperinsulinaemic–euglycaemic clamp with simultaneous infusion of either a lipid emulsion or glycerol as a control. Blood was sampled at regular time points and muscle biopsies were taken before and after every test. Intramuscular triacylglycerol (IMTG) content was determined by Oil Red O staining and gene expression was measured by quantitative PCR.
Results Lipid infusion resulted in a ∼2.7-fold increase in plasma NEFA levels and a 31±6% decrease in insulin sensitivity (p=0.001). The infusion of lipids resulted in a ∼1.6-fold increase in IMTG (p=0.02), whereas during the clamp with glycerol infusion IMTG tended to decrease to ∼53% of preinfusion levels (p=0.065). Lipid infusion decreased PPARGC1A, PPARGC1B and PPARA expression to ∼61, 77 and ∼52% of basal values respectively, whereas expression of uncoupling protein 3 was upregulated 1.8-fold (all p<0.05).
Conclusions/interpretation Acute elevation of plasma NEFA levels, leading to muscular fat accumulation and insulin resistance, downregulates PPARGC1A, PPARGC1B and PPARA expression, suggesting that the decrease in PPARGC1 expression observed in the (pre)diabetic state may be the result, rather than the cause of lipid-induced insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

8-Cyclopentyl-3-(3-(4-fluorosulfonylbenzoyl)oxy)propyl-propylxanthine (44, FSCPX) has been reported to exhibit potent and selective irreversible antagonism of the A1 adenosine receptor when using in vitro biological preparations. However, FSCPX (44) suffers from cleavage of the ester linkage separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine pharmacophore when used in in vivo biological preparations or preparations containing significant enzyme activity, presumably by esterases. Cleavage of the ester linkage renders FSCPX (44) inactive in terms of irreversible receptor binding. In order to obtain an irreversible A1 adenosine receptor antagonist with improved stability, and to further elucidate the effects of linker structure on pharmacological characteristics, several FSCPX (44) analogues incorporating the chemoreactive 4-(fluorosulfonyl)phenyl moiety were targeted, where the labile ester linkage has been replaced by more stable functionalites. In particular, ether, alkyl, amide and ketone linkers were targeted, where the length of the alkyl chain was varied from between one to five atoms. Synthesis of the target compounds was achieved via direct attachment of the N-3 substituent to the xanthine. These compounds were then tested for their biological activity at the A1 adenosine receptor via their ability to irreversibly antagonise the binding of [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX, ( 9) to the A1 adenosine receptor of DDT1 MF-2 cells. For comparison, the xanthines were also tested for their ability to inhibit the binding of [3H]-4-(2-[7-amino-2-{furyl} {1,2,4}- triazolo{2,3-a} {1,3,5}triazin-5-ylamino-ethyl)]phenol ([3H]ZM241385, 36) to the A2A adenosine receptor of PC-12 cells. The results suggest that the length and chemical composition of the linker separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine ring contribute to the potency and efficacy of the irreversible A1 adenosine receptor ligands. Like FSCPX (44, IC50 A1 = 11.8 nM), all derivatives possessed IC50 values in the low nM range under in vitro conditions. Compounds 94 (IC50 A1 = 165 nM), 95 (IC50 A1 = 112 nM) and 96 (IC50 A1 = 101 nM) possessing one, three and five methylene spacers within the linkage respectively, exhibited potent and selective binding to the A1 adenosine receptor versus the A2A adenosine receptor. Compound 94 did not exhibit any irreversible binding at A1 adenosine receptors, while 95 and 96 exhibit only weak irreversible binding at A1 adenosine receptors. Those compounds containing a benzylic carbonyl separating the 4-(fluorosulfonyl)phenyl moiety from the xanthine ring in the form of an amide (119, IC50 A1 = 24.9 nM, and 120, IC50 A1 = 21 nM) or ketone (151, IC50 A1 = 14 nM) proved to be the most potent, with compound 120 exhibiting the highest selectivity of 132-fold for the A receptor over the A2A receptor. compounds 119, 120 and 151 also strongly inhibited the binding of [3H]DPCPX irreversibly (82%, 83% and 78% loss of [3H]DPCPX binding at 100 nM respectively). compounds 120 and 151 are currently being evaluated for use in in vivo studies. Structure-activity studies suggest that altering the 8-cycloalkyl group of A1 selective xanthines for a 3-substituted or 2,3-disubstituted styryl, combined with N-7 methyl substitution will produce a compound with high affinity and selectivity for the A2A adenosine receptor over the A1 adenosine receptor. Compound 167 (IC50 A2A = 264 nM) possessing 8-(m-chloro)styryl substitution and the reactive 4-(fluorosulfonyl)phenyl moiety separated from the xanthine ring via an amide linker in the 3-position (as for 119 and 120), exhibited relatively potent binding to the A2A adenosine receptor of PC-12 cells, with a 16-fold selectivity for that receptor over the A1 adenosine receptor. However, compound 167 exhibited only very weak irreversible binding at A2A adenosine receptors. Overall, at this stage of biological testing, compound 120 appears to possess the most advantageous characteristics as an irreversible antagonist for the A1 adenosine receptor. This can be attributed to its high selectivity for the A1 adenosine receptor as compared to the A2A adenosine receptor. It also has relatively high potency for the A1 adenosine receptor, a concentration-dependent and selective inactivation of A1 adenosine receptors, and unbound ligand is easily removed (washed out) from biological membranes. These characteristics mean compound 151 has the potential to be a useful tool for the further study of the structure and function of the A1 adenosine receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hypertrophic Heart Rat (HHR) displays spontaneous cardiomyocyte hypertrophy in association with an apparent reduction in myocyte number in adulthood. This suggests the possibility of reduced hyperplasia or increased apoptosis during early cardiac development. The angiotensin AT1 and AT2 receptor subtypes have been implicated in both cellular growth and apoptosis, but the precise mechanisms are unclear. The aim of this study was to determine the relationship between cardiac AngII receptor expression levels and neonatal cardiomyocyte growth and apoptotic responses in the HHR compared with the Normal Heart Rat (NHR) control strain. Cardiac tissues were freshly harvested from male HHR and NHR at several developmental stages (p2 and 4, 6, 8, 12wks). HHR cardiac weight indices were considerably smaller than NHR at day 2 (4.330.19 vs 5.010.08 mg/g), but ‘caught-up’ to NHR by 4 weeks (5.100.15 vs 5.160.11 mg/g). By 12 weeks, HHR hearts were 27% larger than NHR. Tissue AT1A and AT2 mRNA expression levels were quantified by real-time RT-PCR. Relative to NHR, HHR neonatal hearts exhibited a 4.6-fold higher AT2/AT1 mRNA expression ratio. Cultured neonatal cardiomyocytes were infected with AT1A and/or AT2 receptor-expressing adenoviruses to achieve a physiological level of receptor expression (150 fmol receptor protein/mg total cell protein). In addition, to emulate receptor expression in neonatal HHR hearts, cells were co-infected with AT1A and AT2 receptors at a 4:1 ratio. Apoptosis incidence was studied by morphological analysis after 72 hours exposure to 0.1 M AngII. When infected with the AT1A receptor alone, a higher proportion of HHR myocytes appeared apoptotic than NHR (22.7 4.1% vs 1.1 0.6%, P 0.001). This implies that intrinsic differences predispose HHR cells to accentuated AT1-mediated apoptosis. Interestingly, the bax-1/bcl-2 mRNA expression ratio was significantly higher (50%) in HHR neonatal hearts. When cells were co-infected with AT1A and AT2 receptors, evidence of apoptosis in HHR cells virtually disappeared (0.4 0.1%). These findings suggest a novel capacity of AT2 receptors to counteract accentuated AT1A receptor-induced apoptosis in the HHR in early cardiac growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT1 ha. The 5-HT1 ha shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT1 ha is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT1 ha belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT1 ha  mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT1 ha specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT1 ha immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate risk for neuroticism due to the joint action of low maternal care and compromised mesocorticolimbic ‘reward’ system function linked to a variable number tandem repeat (VNTR) in the dopamine 4 receptor gene (DRD4). Data were drawn from the Victorian Adolescent Health Cohort Study, a longitudinal study of the health and well-being of 2,000 young Australians followed from adolescence to young adulthood across 8 waves from 14- to 28-years. Genetic risk was defined by carriage of at least one copy of the 7-repeat allele or derivative alleles 5, 6, and 8 (labeled 7R+). Neuroticism was assessed in adolescence and young adulthood. We observed an approximately fourfold increase in the odds of reporting neurotic symptoms in carriers of the 7R+ disposition who reported low maternal care compared with non-carriers who reported high maternal care. The percentage of risk attributable to mechanisms in which both factors played a role was 35%. Findings are discussed in terms of implications for prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Receptor activity-modifying proteins (RAMPs) interact with and modify the behavior of the calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR). We have examined the contribution of the short intracellular C terminus, using constructs that delete the last eight amino acids of each RAMP. C-Terminal deletion of individual RAMPs had little effect on the signaling profile induced when complexed with CLR in COS-7 or human embryonic kidney (HEK)293 cells. Likewise, confocal microscopy revealed each of the mutant RAMPs translocated hemagglutinin-tagged CLR to the cell surface. In contrast, a pronounced effect of RAMP C-terminal truncation was seen for RAMP/CTRa complexes, studied in COS-7 cells, with significant attenuation of amylin receptor phenotype induction that was stronger for RAMP1 and -2 than RAMP3. The loss of amylin binding upon C-terminal deletion could be partially recovered with overexpression of Gαs, suggesting an impact of the RAMP C terminus on coupling of G proteins to the receptor complex. In HEK293 cells the c-Myc-RAMP1 C-terminal deletion mutant showed high receptor-independent cell surface expression; however, this construct showed low cell surface expression when expressed alone in COS-7 cells, indicating interaction of RAMPs with other cellular components via the C terminus. This mutant also had reduced cell surface expression when coexpressed with CTR. Thus, this study reveals important functionality of the RAMP C-terminal domain and identifies key differences in the role of the RAMP C terminus for CTR versus CLR-based receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The angiotensin AT4 receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT4 receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT4 receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na+ transport in isolated renal proximal tubules. The AT4 receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT4 receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The mesolimbic structures of the brain are important in the anticipation and perception of reward. Moreover, many drugs of addiction elicit their response in these structures. The M5 muscarinic receptor (M5R) is expressed in dopamine-containing neurones of the substantia nigra pars compacta and ventral tegmental area, and regulates the release of mesolimbic dopamine. Mice lacking M5R show a substantial reduction in both reward and withdrawal responses to morphine and cocaine. The CHRM5, the gene that codes for the M5R, is a strong biological candidate for a role in human addiction. We screened the coding and core promoter sequences of CHRM5 using denaturing high performance liquid chromatography to identify common polymorphisms. Additional polymorphisms within the coding and core promoter regions that were identified through dbSNP were validated in the test population. We investigated whether these polymorphisms influence substance dependence and dose in a cohort of 1947 young Australians.

Results: Analysis was performed on 815 participants of European ancestry who were interviewed at wave 8 of the cohort study and provided DNA. We observed a 26.8% increase in cigarette consumption in carriers of the rs7162140 T-allele, equating to 20.1 cigarettes per week (p=0.01). Carriers of the rs7162140 T-allele were also found to have nearly a 3-fold increased risk of developing cannabis dependence (OR=2.9 (95%CI 1.1-7.4); p=0.03).

Conclusion: Our data suggest that variation within the CHRM5 locus may play an important role in tobacco and cannabis but not alcohol addiction in European ancestry populations. This is the first study to show an association between CHRM5 and substance use in humans. These data support the further investigation of this gene as a risk factor in substance use and dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manifestations of viral infections can differ between women and men, and marked sex differences have been described in the course of HIV-1 disease. HIV-1-infected women tend to have lower viral loads early in HIV-1 infection but progress faster to AIDS for a given viral load than men. Here we show substantial sex differences in the response of plasmacytoid dendritic cells (pDCs) to HIV-1. pDCs derived from women produce markedly more interferon-alpha (IFN-alpha) in response to HIV-1-encoded Toll-like receptor 7 (TLR7) ligands than pDCs derived from men, resulting in stronger secondary activation of CD8(+) T cells. In line with these in vitro studies, treatment-naive women chronically infected with HIV-1 had considerably higher levels of CD8(+) T cell activation than men after adjusting for viral load. These data show that sex differences in TLR-mediated activation of pDCs may account for higher immune activation in women compared to men at a given HIV-1 viral load and provide a mechanism by which the same level of viral replication might result in faster HIV-1 disease progression in women compared to men. Modulation of the TLR7 pathway in pDCs may therefore represent a new approach to reduce HIV-1-associated pathology.