99 resultados para OXIDATIVE BURST

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of reactions to inoculation with Phytophthora cinnamomi ranging from high susceptibility to moderate resistance were found in 20 ecotypes of Arabidopsis thaliana. P. cinnamomi zoospores successfully colonised both root and leaf tissue of Arabidopsis and sporulation in the form of chlamydospores and sporangia occurred in leaves and roots of each ecotype but the number varied considerably between ecotypes. In the more susceptible ecotypes, colonisation was characterised by rapid intercellular growth and sporulation of the pathogen from 48 h post inoculation. In less susceptible ecotypes, P. cinnamomi was limited to a defined region within tissues. In response to P. cinnamomi infection, several ecotypes expressed active defence responses in both root and leaf tissue. Callose formation was closely associated with lesion restriction as was the production of the reactive oxygen species, hydrogen peroxide. The oxidative burst was not limited to the site of pathogen ingress but also occurred in distant, uninfected tissues. We have characterised an Arabidopsis–P. cinnamomi system that will be useful for further studies of active resistance mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have evaluated the molecular responses of human epithelial cells to low dose arsenic to ascertain how target cells may respond to physiologically relevant concentrations of arsenic. Data gathered in numerous experiments in different cell types all point to the same conclusion: low dose arsenic induces what appears to be a protective response against subsequent exposure to oxidative stress or DNA damage, whereas higher doses often provoke synergistic toxicity. In particular, exposure to low, sub-toxic doses of arsenite, As(III), causes coordinate up-regulation of multiple redox and redox-related genes including thioredoxin (Trx) and glutathione reductase (GR). Glutathione peroxidase (GPx) is down-regulated in fibroblasts, but up-regulated in keratinocytes, as is glutathione S-transferase (GST). The maximum effect on these redox genes occurs after 24 h exposure to 5–10 mM As(III). This is 10-fold higher than the maximum As(III) concentrations required for induction of DNA repair genes, but within the dose region where DNA repair genes are co-ordinately down-regulated. These changes in gene regulation are brought about in part by changes in DNA binding activity of the transcription factors activating protein-1 (AP-1), nuclear factor kappa-B, and cAMP response element binding protein (CREB). Although sub-acute exposure to micromolar As(III) up-regulates transcription factor binding, chronic exposure to submicromolar As(III) causes persistent down-regulation of this response. Similar long-term exposure to micromolar concentrations of arsenate in drinking water results in a decrease in skin tumour formation in dimethylbenzanthracene (DMBA)/phorbol 12-tetradecanoate 13-acetate (TPA) treated mice. Altered response patterns after long exposure to As(III) may play a significant role in As(III) toxicology in ways that may not be predicted by experimental protocols using short-term exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic arsenic (jAs), a known human carcinogen, acts as a tumor promoter in part by inducing a rapid burst of reactive oxygen species (ROS) in mammalian cells. This causes oxidative stress and a subsequent increase in the level of cellular glutathione (GSH). Glutathione, a ubiquitous reducing sulfhydryl tripeptide, is involved in ROS detoxification and its increase may be part of an adaptive response to the oxidative stress. Glutathione related enzymes including glutathione reductase (GR) and glutathione S-transferase (GST) also play key roles in these processes. In this study the regulatory effects of inorganic arsenite (As111) on the activities of GSH-related enzymes were investigated in cultured human keratinocytes. Substantial increases in GR enzyme activity and mRNA levels were shown in keratinocytes and other human cell lines after exposure to low, subtoxic, micromolar concentrations of As111 for 24 h. Upregulation of GSH synthesis paralleled the upregulation of GR as shown by increases in glutamatecysteine lyase (GeL) enzyme activity and mRNA levels, cystine uptake, and intracellular GSH levels. Glutathione S-transferase activity was also shown to increase slightly in keratinocytes, but not in fibroblasts or breast tumor cells. Overall the results show that sublethal arsenic induces a multicomponent response in human keratinocytes that involves upregulation of parts, but not all of the GSH system and counteracts the acute toxic effects of jAs. The upregulation of GR has not previously been shown to be an integral part of this response, although GR is critical for maintaining levels of reduced GSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms α and γ, and selected enzyme activities in type I and II skeletal muscle. Research Methods and Procedures: Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. Results: The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-γ coactivator and forkhead transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARα and PPARγ protein levels were also not altered by the HF diet. Discussion: An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and forkhead transcription factor O1 mRNA and the protein abundance of PPARα and PPARγ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation.
Methods: 20 young (18–30 yrs) and 20 older (≥ 50 yrs) volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH), plasma malondialdehyde (MDA) and serum total antioxidant status.
Results: Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P < 0.03), and significant decreases in plasma MDA (P < 0.001) and GSH (P < 0.004) in young and old subjects. The results show that the consumption of 400 mL/day of red wine for two weeks, significantly increases antioxidant status and decreases oxidative stress in the circulation.
Conclusion: It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endocannabinoids, a recently discovered endogenous, lipid derived, signaling system regulating energy metabolism, have effects on central and peripheral energy metabolism predominantly via the cannabinoid receptor type 1 (CB1). CB1 is expressed centrally in the hypothalamus and nucleus accumbens and peripherally in adipocytes and skeletal muscle. This study determined the effect of endocannabinoids on the expression of genes regulating energy metabolism in human skeletal muscle. Primary cultures of myotubes (lean and obese; n = 3/group) were treated with the cannabinoid receptor agonist, anandamide (AEA) (0.2 and 5 μM) and the CB1 specific antagonist AM251 (0.2 and 5 μM) separately and in combination for 24 h. The expression of mRNA for AMP-activated protein kinase (AMPK) alpha 1 (α1) and alpha 2 (α2), pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) were determined using ‘Real Time’ RT-PCR. AMPKα1 mRNA increased in lean and obese myotubes in response to AM251 (P < 0.05). AEA inhibited the effect of AM251 on AMPKα1 mRNA levels in myotubes from lean and obese subjects (P < 0.05); the dose–response curve was shifted to the left in the obese. In response to AM251, irrespective of the presence of AEA, PDK4 expression was decreased in lean and obese myotubes (P < 0.05). Taken together these data suggest that endocannabinoids regulate pathways affecting skeletal muscle oxidation, effects particularly evident in myotubes from obese individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the actions of 17β-estradiol (E2) and progesterone on the regulation of the peroxisome proliferator-activated receptors (PPARα and PPARγ) family of nuclear transcription factors and the mRNA abundance of key enzymes involved in fat oxidation, in skeletal muscle. Specifically,
carnitine palmitoyltransferase I (CPT I), β-3-hydroxyacyl CoA dehydrogenase (β-HAD), and pyruvate dehydrogenase kinase 4 (PDK4) were examined. Sprague–Dawley rats were ovariectomized and treated with placebo (Ovx), E2, progesterone, or both hormones in combination (E+P). Additionally,
sham-operated rats were treated with placebo (Sham) to serve as controls. Hormone (or vehicle only) delivery was via time release pellets inserted at the time of surgery, 15 days prior to analysis. E2 treatment increased PPARα mRNA expression and protein content (P<0·05), compared with Ovx treatment. E2 also resulted in upregulated mRNA of CPT I and PDK4 (P<0·05). PPARγ mRNA expression was also increased (P<0·05) by E2 treatment, although protein content remained unaltered. These data
demonstrate the novel regulation of E2 on PPARα and genes encoding key proteins that are pivotal in regulating skeletal muscle lipid oxidative flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Biliary tract infection is associated with high mortality. This study investigated the effect of glucocorticoid pretreatment on lipopolysaccharide (LPS)-induced cholangitis. Methods: Rats undergoing either sham operation or ligation of the extrahepatic bile duct (BDL) for 2 weeks were randomly assigned to receive intravenous injections of dexamethasone (DX) or normal saline (NS) prior to infusing LPS into the biliary tract. The plasma levels of tumor necrosis factor-α (TNFα), chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) as well as liver mRNA expression of MCP-1 and MIP-2 were determined. Infiltration of monocytes, Kupffer cells, and neutrophils in rat liver were studied with immunohistochemistry. Oxidative liver injury was measured by the malondialdehyde (MDA) content. Results: Dexamethasone pretreatment resulted in significantly decreased plasma levels of TNFα at 1 hour, MCP-1 and MIP-2 at 2 and 3 hours, and decreased liver MCP-1 mRNA expression at 3 hours following LPS infusion in BDL-DX rats than in BDL-NS rats. The number of inflammatory cells in the liver was significantly different between sham- and BDL-treated rats but was not affected by DX pretreatment. Pretreatment with DX resulted in significantly decreased liver MDA contents in the BDL-DX group than that in the BDL-NS group. Jaundiced rats pretreated with 5 mg DX prior to infusion of 1 g of LPS were 6.8 times more likely to survive than those that were not pretreated. Conclusions: Pretreatment of jaundiced, LPS-treated rats with a  supraphysiological dose of dexamethasone may rescue their lives by suppression of chemokine expression and alleviation of oxidative liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of three experiments were conducted with second cross ([Merino×Border Leicester]×Poll Dorset) wether lambs to evaluate the effects of dietary treatments on manipulation of muscle long-chain (LC) omega-3 fatty acids (FA) on the color stability and oxidative stability of fresh and vacuum packaged lamb. At the end of 7-, 6- and 6-week experimental periods for experiments (Exp.) 1–3 respectively, lambs were slaughtered at a commercial abattoir. At 24 h post-mortem, muscle longissimus lumborum (LL) and longissimus thoracis (LT) were removed and evaluated for color and lipid oxidative stability under specified commercial storage and display condition. Of the dietary supplements used, fish meal and fish oil moderately (P<0.01) and markedly (P<0.001) increased muscle omega-3 FA content, while both protected canola seed (P<0.001) and protected sunflower meal protein significantly (P<0.02) increased muscle omega-6 FA content or ratio of omega-6/omega-3 of the longissimus muscle. In all experiments, the substantial increase (P<0.001) in muscle LC omega-3 and omega-6 FA had no consistent significant effect on color values (redness (a*), yellowness (b*) and lightness (L*)) for fresh and vacuum packaged lamb over a 6-day display period. Lipid oxidation, determined by the levels of thiobarbituric acid reactive substances (TBARS) indicated the enrichment of muscle polyunsaturated fatty acid (PUFA) levels in lambs did not produce significant differences resulting either from main treatment effects or for treatment×day×type interactions (where type was fresh and vacuum packaged). Present results demonstrated the color and lipid oxidative stability of lamb longissimus muscle during refrigerated display was not affected by enhanced levels of omega-3 and omega-6 FA due to dietary treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of three experiments were conducted with second cross ([Merino×Border Leicester]×Poll Dorset) wether lambs to evaluate the effects of dietary treatments on manipulation of muscle long-chain (LC) omega-3 fatty acids (FA) on the color stability and oxidative stability of fresh and vacuum packaged lamb. At the end of 7-, 6- and 6-week experimental periods for experiments (Exp.) 1–3 respectively, lambs were slaughtered at a commercial abattoir. At 24 h post-mortem, muscle longissimus lumborum (LL) and longissimus thoracis (LT) were removed and evaluated for color and lipid oxidative stability under specified commercial storage and display condition. Of the dietary supplements used, fish meal and fish oil moderately (P<0.01) and markedly (P<0.001) increased muscle omega-3 FA content, while both protected canola seed (P<0.001) and protected sunflower meal protein significantly (P<0.02) increased muscle omega-6 FA content or ratio of omega-6/omega-3 of the longissimus muscle. In all experiments, the substantial increase (P<0.001) in muscle LC omega-3 and omega-6 FA had no consistent significant effect on color values (redness (a*), yellowness (b*) and lightness (L*)) for fresh and vacuum packaged lamb over a 6-day display period. Lipid oxidation, determined by the levels of thiobarbituric acid reactive substances (TBARS) indicated the enrichment of muscle polyunsaturated fatty acid (PUFA) levels in lambs did not produce significant differences resulting either from main treatment effects or for treatment×day×type interactions (where type was fresh and vacuum packaged). Present results demonstrated the color and lipid oxidative stability of lamb longissimus muscle during refrigerated display was not affected by enhanced levels of omega-3 and omega-6 FA due to dietary treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of three experiments were conducted with second cross ([Merino×Border Leicester]×Poll Dorset) wether lambs to evaluate the effects of dietary treatments on manipulation of muscle long-chain (LC) omega-3 fatty acids (FA) on the color stability and oxidative stability of fresh and vacuum packaged lamb. At the end of 7-, 6- and 6-week experimental periods for experiments (Exp.) 1–3 respectively, lambs were slaughtered at a commercial abattoir. At 24 h post-mortem, muscle longissimus lumborum (LL) and longissimus thoracis (LT) were removed and evaluated for color and lipid oxidative stability under specified commercial storage and display condition. Of the dietary supplements used, fish meal and fish oil moderately (P<0.01) and markedly (P<0.001) increased muscle omega-3 FA content, while both protected canola seed (P<0.001) and protected sunflower meal protein significantly (P<0.02) increased muscle omega-6 FA content or ratio of omega-6/omega-3 of the longissimus muscle. In all experiments, the substantial increase (P<0.001) in muscle LC omega-3 and omega-6 FA had no consistent significant effect on color values (redness (a*), yellowness (b*) and lightness (L*)) for fresh and vacuum packaged lamb over a 6-day display period. Lipid oxidation, determined by the levels of thiobarbituric acid reactive substances (TBARS) indicated the enrichment of muscle polyunsaturated fatty acid (PUFA) levels in lambs did not produce significant differences resulting either from main treatment effects or for treatment×day×type interactions (where type was fresh and vacuum packaged). Present results demonstrated the color and lipid oxidative stability of lamb longissimus muscle during refrigerated display was not affected by enhanced levels of omega-3 and omega-6 FA due to dietary treatments.