8 resultados para Nocardia brasiliensis

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks. Results: Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measurements showed that the phloem turgor pressure probe can sensitively measure the real-time variation of phloem turgor pressure in H. brasiliensis but the calculation of phloem turgor pressure with xylem tension, xylem sap osmotic potential and phloem sap osmotic potential will under-estimate it. The measured phloem turgor pressure gradient in H. brasiliensis is contrary to the Münch theory. The phloem turgor pressure of H. brasiliensis varied from 8-12 bar as a consequence of water withdrawal from transpiration. Tapping could result in a sharp decrease of phloem turgor pressure followed by a recovery from 8-45 min after the tapping. The recovery of phloem turgor pressure after tapping and its change with xylem sap flow suggest the importance of phloem water relationship in the phloem turgor pressure regulation. Conclusion: The phloem turgor pressure probe is a reliable technique for measuring the real-time variation of phloem turgor pressures in H. brasiliensis. The technique could probably be extended to the accurate measurement of phloem turgor pressure in other woody plants which is essential to test the Münch theory and to investigate the phloem water relationship and turgor pressure regulation. © 2014 An et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phloem turgor pressure (PTP) is the initial driving force for latex flow after a rubber tree is tapped and therefore plays an important role in rubber tree latex production. Variation in PTP with rubber tree clone, age, yield potential and commonly used Ethrel (an ethylene releaser) stimulation have, however, not been comprehensively studied to date. The aim of this study was to investigate these relations and examine whether PTP can be used as an index for rubber tree clone assessment and tapping system optimization. The results showed that: (1) the daily change of PTP in the foliation season suggests that a high PTP can ensure a high latex yield and tapping could be moved forward to midnight or earlier in the night; (2) the decrease of PTP from the basal to distal stem indicates the benefit of a controlled upward tapping system; (3) the logarithmic increase in PTP with rubber tree planting age and age-based mean girth suggests that the preferred age for the commencement of rubber tree tapping is eight years; (4) the change of PTP with regenerated bark age suggests that the regenerated bark could be exploited again after the second year; (5) PTP is positively related to the yield potential of rubber tree clones; (6) although Ethrel stimulation could not significantly increase the initial PTP of a rubber tree, it delays the recovery of PTP after tapping. Therefore, PTP is an indicator of rubber tree latex yield and can be used for tapping system optimization. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latex dilution reaction during the tapping flow course has been well documented and associated with the facilitation of tapping latex flow. However, its underlying mechanism has not experimentally examined. The latex total solid content, osmotic potential and phloem turgor pressure change during the tapping flow course were simultaneously measured to investigate the cause of water movement during the tapping flow course. It was found that there are three different stages for the laticifer water equilibrium during the tapping flow course. The tapping-induced rapid turgor pressure drop is the cause of the first stage water influx into laticifers, while osmoregulation prevails during water exchange in the second and third stages of tapping flow. Meanwhile, aquaporin expressions were, for the first time, investigated during the tapping flow course. The rapid transcript up-regulation of HbPIP1, HbPIP2;1 and HbPIP2;3 contributes to the latex dilution reaction. However, their activity gating cannot be ruled out. Ethrel stimulation can significantly dilute the corresponding latex fractions during the tapping flow course due to its up-regulations of HbPIP1, HbPIP2;1 and HbPIP2;3. Nevertheless, the latex dilution reaction pattern for the Ethrel treated trees did not change, except for a lower degree of dilution compared with the un-treated trees. All these results suggest that both phloem turgor pressure and aquaporins are involved in the latex dilution reaction during the tapping flow course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improving drought resistance of rubber trees has become a pressing issue with the extension of rubber plantations and the prevalence of seasonal drought. Root system is vital to water and nutrients uptake of all plants, therefore, rootstocks could play decisive roles in drought resistance of grafted rubber trees on a specific scion clone. To investigate the responses of different clone rootstocks and their grafted trees to water stress and find applicable methods for selecting drought resistant rootstocks, seven related parameters and root hydraulic properties of both seeds originated and grafted saplings of PB86, PR107, RRIM600 and GT1 were measured to assess their drought resistance. It was shown that the rootstock drought resistance and root hydraulic conductance may improve the drought resistance of the grafted rubber trees. Among the four clone rootstocks, GT1, which demonstrated more resistant to drought and higher root hydraulic conductance, was comparatively resistant to drought both for the seed propagation seedlings and grafted saplings. In addition, studies on the grafted saplings with different root hydraulic conductance further validated the possibility of selecting drought resistant rootstocks on the basis of rootstock hydraulic conductance using a high-pressure flow meter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the effects of tea tree oil on rubber latex yield and the resulting latex physiological parameters of rubber tree (Hevea brasiliensis),clean water and 20%,40%,60%,80% and 100% of tea tree oil were applied on the tapping cut of rubber trees. The data were analyzed by Duncan test and its results showed that when compared to clean water (ck),80% and 100% of tea tree oil stimulation significantly promoted rubber latex yield(P<0.05). In addition,the latex physiological parameters changed with the sucrose content(P<0.01),magnesium ion content (P<0.01) and inorganic phosphorus content (P<0.01) of latex significantly increasing and thiol content significantly deceasing (P<0.01). The effect of tea tree oil treatments on rubber yield was similar to the impact of 0.5% ethrel stimulation. However,compared to ethrel stimulation,100% tea tree oil treatment significantly increased dry rubber and sucrose contents (P<0.01) and decreased thiol content (P<0.01). Thus,tea tree oil treatment involved different latex yield promotion mechanisms than that of ethrel stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural rubber latex (NRL) from Hevea brasiliensis was used as a matrix to synthesize gold nanoparticles (AuNPs), leading to an organic-inorganic hybrid latex of NRL-supported AuNPs (AuNPs@NRL). The in situ and environmentally friendly preparation of AuNPs in an NRL matrix was developed by thermal treatment without using any other reducing agents or stabilizers because natural rubber particles and non-rubber components present in serum can serve as supporters for the synthesized AuNPs. As a result, the nanosized and well-dispersed AuNPs not only are decorated on the surface of natural rubber particles, but also can be found in the serum of NRL. The size of the AuNPs presented in NRL matrix can be controlled by adjusting the concentration of NRL. Furthermore, the flexible surface-enhanced Raman scattering (SERS) substrates made from the AuNPs@NRL through vacuum filtration presented good enhancement of the Raman probe molecule of 4-mercaptopyridine and outstanding SERS reproducibility. The capability of synthesizing the bio-supported nanohybrid latex provides a novel green and simple approach for the fabrication of flexible and effective SERS substrates.