87 resultados para NANOCOMPOSITE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A coarse-grained W–25%Cu composite is subjected to high pressure torsion (HPT) at room temperature, 200 °C, and 400 °C, to different very large strains. The evolution of microstructure with increasing strain is investigated. It is shown that the HPT causes a strong refinement of W particles. No significant influence of the deformation temperature on the microstructure is revealed at small strains (64). A strong effect of the HPT temperature on the microstructure is found at larger strains (>64). It is demonstrated that the HPT can be successfully used to fabricate a W–25%Cu nanocomposite.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvinylalcohol/Silica (PVA/SiO2) nanocomposites with different SiO2 contents are synthesized by employing a novel self-assembly monolayer (SAM) technique. The influence of the silica on dynamic mechanical properties of the nanocomposites is investigated by conducting dynamic mechanical analysis (DMA) and quasi-thermal mechanical analysis (Q-TMA). It is found that the storage modulus (E′), loss factor (tga), glass transition temperature (Tg), and activation energy (Ea) of prepared nanocomposites all show a strong dependence on the SiO2 content. The Q-TMA results indicate that under a constant force, the elasticity of nanocomposites decreases with SiO2 content, and the softening temperature moves to a higher temperature when more SiO2 is added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel polyamide nanocomposite fibres have been produced by compounding semi aromatic Poly (m-xylene adipamide) (MXD6) and organophilic Montmorillonite (MMT). Partially orientated fibres (POF) of MXD6 nanocomposite were obtained by melt spinning on a multifilament fibre extrusion system at three different speeds. The effect of the drawing velocity
on the mechanical properties of the filaments has been determined. Tensile measurements indicated that the introduction of the nanoparticies by melt intercalation improves the tenacity and toughness of the resulting polyamide fibres. The microstructure of the nanocomposites was examined by X-ray diffraction and Transmission Electron Microscope (TEM) and shown to
be an exfoliated disordered structure. The thermal stability of MXD6 nanocomposites was analysed by thermo gravimetric analysis (TGA) suggesting stabilisation of the clay and the polymer systems above 450°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technical textiles, based on advanced polymeric materials, are an important segment of the synthetic textile market. This area has seen considerable growth in recent times, now accounting for almost 25% of all manufactured synthetic fibres, and has driven the recent development of a range of specialist high performance polymer fibres that are stronger, lighter or have improved heat and fire resistance. However, the increasing size of the market has highlighted the need for materials that have improved performance whilst maintaining low manufacturing costs. These factors have resulted in a change in how new specialty fibres are developed and the emphasis in this field is now on the upgrading or improving of the properties of commodity (conventional) fibres by modifying their properties to suit specific applications.

This paper will describe our work on preparing novel polymer nanocomposite fibres by the addition of clay nanoparticles during melt extrusion. The effect of the nanoparticles on the processing of the fibres and the result on the physical morphology and mechanical properties will be described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic nano fillers have demonstrated great potential to enhance the properties of natural rubber (NR). The present article reports the successful development of a NR nanocomposite reinforced with nano silica (SiO2). Its dynamic mechanical properties, thermal aging resistance, and morphology are investigated. The results show that the SiO2 nanoparticles are homogenously distributed throughout the NR matrix in a form of spherical nano-cluster with an average size of 80 nm when the SiO2 content is 4 wt%. With the introduction of SiO2, the thermal resistance and the storage modulus of NR host significantly increase, and the activation energy of relaxation of the nanocomposite, compared to the raw NR, increases from 90.1 to 125.8 kJ/mol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technical textiles, based on advanced polymeric materials, are an important segment of the synthetic textile market. This area has seen considerable growth in recent times, now accounting for almost 25% of all manufactured synthetic fibres, and has driven the recent development of a range of specialist high performance polymer fibres that are stronger, lighter or have improved heat and fire resistance. However, the increasing size of the market has highlighted the need for materials that have improved performance whilst maintaining low manufacturing costs. These factors have resulted in a change in how new specialty fibres are developed and the emphasis in this field is now on the upgrading or improving of the properties of commodity (conventional) fibres by modifying their properties to suit specific applications.

This paper will describe our work on preparing novel polymer nanocomposite fibres by the addition of clay nanoparticles during melt extrusion. The effect of the nanoparticles on the processing of the fibres and the result on the physical morphology and mechanical properties will be described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermooxidative degradation of poly (vinyl alcohol)/silica (PVA/SiO2) nanocomposite prepared with self-assembly monolayer (SAM) technique is investigated by using a thermogravimetry (TG) and Fourier transform infrared spectroscopy coupled thermogravimetry (FTIR/TG). The results show that although the thermooxidative degradation process of prepared nanocomposite is similar to that of the pure PVA, its thermooxidative stability has been greatly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite electrolytes of a fully amorphous trifunctional polyether (3PEG) and poly- (methylene ethylene oxide) (PMEO) have been complexed with two lithium salts and nanoparticulate (~20 nm) fillers of TiO2 and Al2O3. Addition of the fillers to the polymer salt complexes shows a significant change in the conformational modes of both polymers, especially the D-LAM region between 200 and 400 cm-1, indicating a reduced segmental flexibility of the chain. These changes are more pronounced with the use of TiO2 than Al2O3. Incorporation of the nanoparticulate fillers to the electrolytes fails to influence the degree of ion association, suggesting that the number of charge carriers available for conduction in both polymers using both LiClO4 and LiCF3SO3 is not the source of any conductivity increase. Addition of the fillers, which was seen to increase the conductivity in PEO-based systems, generally lowers the conductivity in the present PMEO systems, while the addition of TiO2 has little or no effect except in the cases of 3PEG 1.5 and 1.25 mol/kg LiClO4. In this case, 10 wt % TiO2 provides a conductivity increase of half an order of magnitude at approximately 60 °C. We also report for the first time a Raman spectroscopy investigation into the PEO-based nanocomposite electrolytes. The present results are discussed in terms of the electrostatic interactions involving dielectric properties of the fillers, of special interest being the interactions between the polymer and the fillers and between the ionic species and the fillers, when the effect of crystallization can be ignored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a completely amorphous polyether we have investigated the effect of the inclusion of a nano-particulate filler on a polymer electrolyte. Nano-sized TiO2 is shown not to significantly affect the conductivity of composite electrolytes containing 1.0 or 1.25 mol/kg LiClO4 or 1.5 or 2.0 mol/kg LiTFSI. At 1.5 mol/kg LiClO4 a significant increase in conductivity is observed. Raman spectroscopy experiments have been used to investigate the effect of filler on ion-aggregation. Only one new vibrational mode can be assigned to the composite which is not due to the polymer electrolyte or the filler. From this work, we believe the increased conductivity observed by previous researchers as a result of filler addition may be largely attributed to the effect on the degree of crystallinity along with some disruption of ion-aggregation by the fillers in PEO based electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nano-sized Mg2Al layered double hydroxide (LDH) was used for encapsulating an organic UV absorber, 2-hydroxy-4- methoxybenzeophenone-5-sulfonic acid (HMBS), to produce HMBS@LDH hybrid nano-platelets. Upon dispersing this organic-inorganic hybrid LDH into ethylene-vinyl alcohol copolymer (EVOH) for film casting, a thin polymer
nanocomposite film that is UV opaque but highly transparent to visible light (higher than 90%) was formed. Thermogravimetry (TG) analysis confirmed that the intercalation of HMBS into LDH considerably increased the thermal stability of HMBS. Such an improvement was attributed to the strong guest-host interaction between the HMBS anions and the LDH layers. Also, the nanocomposite films were flexible and had good mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The preparation of silica-coated ZnO nanocomposite using polyvinyl pyrrolidone (PVP) as a coupling agent was investigated. Transmission electron microscopy analysis revealed that silica has been deposited on the surface of PVP-capped ZnO nanoparticles as a continuous thin layer. Two-dimensional correlation analysis based on the time-dependent UV–vis spectra was introduced to study the interaction governing the deposition of silica on to PVP-capped ZnO. Strong hydrogen bonds formed between the amphiphilic PVP molecules and silica in the silicacoated PVP-capped ZnO composites. The reduced photocatalytic activity of silica-coated ZnO nanoparticles will enhance their performance as durable, safe, and nonreactive UV blockers in plastics, paints, and coating for outdoor textile and timber products.