4 resultados para Mutation rate

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIV undergoes high rates of mutation and recombination during reverse transcription, but it is not known whether these events occur independently or are linked mechanistically. Here we used a system of silent marker mutations in HIV and a single round of infection in primary T lymphocytes combined with a high-throughput sequencing and mathematical modeling approach to directly estimate the viral recombination and mutation rates. From >7 million nucleotides (nt) of sequences from HIV infection, we observed 4,801 recombination events and 859 substitution mutations (≈1.51 and 0.12 events per 1,000 nt, respectively). We used experimental controls to account for PCR-induced and transfection-induced recombination and sequencing error. We found that the single-cycle virus-induced mutation rate is 4.6 × 10(-5) mutations per nt after correction. By sorting of our data into recombined and nonrecombined sequences, we found a significantly higher mutation rate in recombined regions (P = 0.003 by Fisher's exact test). We used a permutation approach to eliminate a number of potential confounding factors and confirm that mutation occurs around the site of recombination and is not simply colocated in the genome. By comparing mutation rates in recombined and nonrecombined regions, we found that recombination-associated mutations account for 15 to 20% of all mutations occurring during reverse transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphism describes two or more distinct, genetically determined, phenotypes that co-occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade.