117 resultados para Mitochondrial Genomics

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondria play a critical role in regulating cellular functions including bioenergetics, calcium homeostasis, redox signalling, and apoptotic cell death. Mitochondria are also essential to many aspects of neurodevelopment and neuronal functions. However, mitochondrial impairment may affect bioenergetics in the developing brain and alter critical neuronal processes leading to neurodevelopmental abnormalities. Schizophrenia is a chronic and severe neuropsychiatric disorder of neurodevelopmental origin. Immuno-inflammatory pathway is one of the widely appreciated mechanisms that has consistently been implicated in the neurodevelopmental origin of schizophrenia. However, the source of inflammation and the underlying neurobiological mechanisms leading to schizophrenia are yet to be fully ascertained. Recent understanding reveals that perturbation of mitochondrial network dynamics might lead to various nervous system disorders with inflammatory pathologies. Mitochondrial deficit, altered redox balance and chronic low-grade inflammation are evident in schizophrenia. It is hypothesized that oxidative/nitrosative stress responses due to mitochondrial dysfunctions might activate immuno-inflammatory pathways and subsequently lead to neuroprogressive changes in schizophrenia. Herein, we summarise the current understanding of molecular links between mitochondrial dysfunctions and pathogenesis of schizophrenia based on evidence from genomics, proteomics and imaging studies, which together support a role for mitochondrial impairment in the pathogenetic pathways of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bacteria, the protein FtsZ is the principal component of a ring that constricts the cell at division. Though all mitochondria probably arose through a single, ancient bacterial endosymbiosis, the mitochondria of only certain protists appear to have retained FtsZ, and the protein is absent from the mitochondria of fungi, animals, and higher plants. We have investigated the role that FtsZ plays in mitochondrial division in the genetically tractable protist Dictyostelium discoideum, which has two nuclearly encoded FtsZs, FszA and FszB, that are targeted to the inside of mitochondria. In most wild-type amoebae, the mitochondria are spherical or rod-shaped, but in fsz-null mutants they become elongated into tubules, indicating that a decrease in mitochondrial division has occurred. In support of this role in organelle division, antibodies to FszA and FszA-green fluorescent protein (GFP) show belts and puncta at multiple places along the mitochondria, which may define future or recent sites of division. FszB-GFP, in contrast, locates to an electron-dense, submitochondrial body usually located at one end of the organelle, but how it functions during division is unclear. This is the first demonstration of two differentially localized FtsZs within the one organelle, and it points to a divergence in the roles of these two proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important requirements for systematic and phylogenetic studies is the identification of gene regions with the appropriate level of variation for the question of interest. Molecular phylogenetic and systematic studies of freshwater crayfish have made use of DNA sequences mainly from ribosomal genes, especially the 16S rRNA gene region. Thus, little information is available on other potentially useful mitochondrial gene regions for systematic studies in these animals. In this study, we look at nucleotide variation and phylogenetic relations within and between four species of freshwater crayfish of the genus Cherax from the southwest of Western Australia using four fragments amplified from the 16S rRNA, 12S rRNA, Cytochrome Oxidase I (COI), and Cytochrome b (Cyt b) gene regions. Samples of Engaeus strictifrons, Euastacus bispinosus, and Geocharax falcata were also sequenced for comparative purposes. The size of the fragments varied from 358 bp to 600 bp. Across all samples, the four fragments showed significant phylogenetic signal and showed similar proportions of variable sites (28.81–37.33%). Average divergence within species for the mitochondrial gene regions varied from 1.18% to 4.91%, with the 16S rRNA being the least variable and Cyt b the most variable. Average divergence between species ranged 7.63–15.53%, with 16S rRNA being the least variable and COI the most variable. At the generic level, average divergence ranged 17.21–23.82%. Phylogenetic analyses of the 16S rRNA, 12S rRNA, and COI regions generated four clades consistent with the presence of four species previously identified on the basis of allozyme and morphological studies. The relationships among samples were largely congruent across the data set, although some relationships remained unresolved. Not all samples could be amplified using the Cyt b primers, and some of those that were showed quite anomalous relationships, suggesting that one or more Cyt b pseudogenes were being amplified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses nucleotide sequences from the 16S rRNA mitochondrial gene to investigate the taxonomy and phylogeny of freshwater crayfish belonging to the 'Cherax destructor' complex. The sequencing of an approximately 440-bp fragment of this gene region from freshwater crayfish sampled from 14 locations identified significant haplotype diversity. Phylogenetic analysis found three distinct clades that correspond to the species C. rotundus, C. setosus and C. destructor. C. rotundus is largely confined to Victoria, and C. setosus is restricted to coastal areas north of Newcastle in New South Wales. C. destructor is widely distributed in eastern Australia and shows significant phylogeographic structure, with three well supported clades. None of these clades, however, correspond to species previously recognised as C. esculus, C. davisi or C. albidus. The failure to genetically distinguish these morphologically defined species is consistent with reproductive information and morphological plasticity relating to habitat similar to that documented for other Cherax species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial fission requires the division of both the inner and outer mitochondrial membranes. Dynamin-related proteins operate in division of the outer membrane of probably all mitochondria, and also that of chloroplasts – organelles that have a bacterial origin like mitochondria. How the inner mitochondrial membrane divides is less well established. Homologues of the major bacterial division protein, FtsZ, are known to reside inside mitochondria of the chromophyte alga Mallomonas, a red alga, and the slime mould Dictyostelium discoideum, where these proteins are likely to act in division of the organelle. Mitochondrial FtsZ is, however, absent from the genomes of higher eukaryotes (animals, fungi, and plants), even though FtsZs are known to be essential for the division of probably all chloroplasts. To begin to understand why higher eukaryotes have lost mitochondrial FtsZ, we have sampled various diverse protists to determine which groups have retained the gene. Database searches and degenerate PCR uncovered genes for likely mitochondrial FtsZs from the glaucocystophyte Cyanophora paradoxa, the oomycete Phytophthora infestans, two haptophyte algae, and two diatoms – one being Thalassiosira pseudonana, the draft genome of which is now available. From Thalassiosira we also identified two chloroplast FtsZs, one of which appears to be undergoing a C-terminal shortening that may be common to many organellar FtsZs. Our data indicate that many protists still employ the FtsZ-based ancestral mitochondrial division mechanism, and that mitochondrial FtsZ has been lost numerous times in the evolution of eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian freshwater crayfish Cherax destructor (Crustacea: Decapoda: Parastacidae). The 15,895-bp genome is circular with the same gene composition as that found in other metazoans. However, we report a novel gene arrangement with respect to the putative arthropod ancestral gene order and all other arthropod mitochondrial genomes sequenced to date. It is apparent that 11 genes have been translocated (ND1, ND4, ND4L, Cyt b, srRNA, and tRNAs Ser(UGA), Leu(CUN), Ile, Cys, Pro, and Val), two of which have also undergone inversions (tRNAs Pro and Val). The ‘duplication/random loss’ mechanism is a plausible model for the observed translocations, while ‘intramitochondrial recombination’ may account for the gene inversions. In addition, the arrangement of rRNA genes is incompatible with current mitochondrial transcription models, and suggests that a different transcription mechanism may operate in C. destructor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary relationships of the freshwater prawn genus Macrobrachium are obscure. Members of this genus are widely distributed across tropical and subtropical regions. The phylogenetic relationships among the seven endemic and six non-endemic Australian Macrobrachium, along with five non-Australian species, were inferred from the mitochondrial 16S rRNA gene sequences. Methods of analysis yielded phylogenetic trees of differing topologies; however, none supported a monophyletic origin for endemic Australian Macrobrachium. Enforced monophyly of a single origin of endemic Macrobrachium was statistically tested and rejected. These results support the view that the endemic Australian Macrobrachium arose from multiple origins. Previous biogeographical hypotheses related to the radiation of Macrobrachium into Australia are re-examined in the context of these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish of the genus Gadopsis are a distinctive component of the freshwater fish fauna of south-eastern Australia. Gadopsis marmoratus and G. bispinosus are the only two species recognised within the genus, with the former of uncertain taxonomic status, as it is thought to be composed of at least two distinct geographical forms based on morphological and allozyme data. The objective of this study was to investigate DNA sequence divergence in Gadopsis, especially in the western portion of its distribution, using an approximately 400 base pair fragment of the mitochondrial small subunit 12S rRNA gene region in order to reassess the taxonomy of the genus. Individuals from 11 locations were sequenced and confirm that G. marmoratus and G. bispinosus are genetically distinct, and further that the G. marmoratus complex consists of two divergent clades representing the previously identified northern and southern forms. The degree of divergence between the three Gadopsis clades was similar (5–6% nucleotide substitutions), suggesting that they diverged from a common ancestor at approximately the same period in geological time. These results are consistent with previous allozyme studies and highlight the usefulness of mitochondrial DNA data coupled with allozyme information for clarifying taxonomic boundaries in morphologically conservative aquatic organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct sequencing of mitochondrial DNA (mtDNA) D-loop (745 bp) and MTATPase6/MTATPase8 (857 bp) regions was used to investigate genetic variation within common carp and develop a global genealogy of common carp strains. The D-loop region was more variable than the MTATPase6/MTATPase8 region, but given the wide distribution of carp the overall levels of sequence divergence were low. Levels of haplotype diversity varied widely among countries with Chinese, Indonesian and Vietnamese carp showing the greatest diversity whereas Japanese Koi and European carp had undetectable nucleotide variation. A genealogical analysis supports a close relationship between Vietnamese, Koi and Chinese Color carp strains and to a lesser extent, European carp. Chinese and Indonesian carp strains were the most divergent, and their relationships do not support the evolution of independent Asian and European lineages and current taxonomic treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis This study aimed to identify genes that are expressed in skeletal muscle, encode proteins with functional significance in mitochondria, and are associated with type 2 diabetes.
Methods We screened for differentially expressed genes in skeletal muscle of Psammomys obesus (Israeli sand rats), and prioritised these on the basis of genomic localisation and bioinformatics analysis for proteins with likely mitochondrial functions.
Results We identified a mitochondrial intramembrane protease, known as presenilins-associated rhomboid-like protein (PSARL) that is associated with insulin resistance and type 2 diabetes. Expression of PSARL was reduced in skeletal muscle of diabetic Psammomys obesus, and restored after exercise training to successfully treat the diabetes. PSARL gene expression in human skeletal muscle was correlated with insulin sensitivity as assessed by glucose disposal during a hyperinsulinaemic–euglycaemic clamp. In 1,031 human subjects, an amino acid substitution (Leu262Val) in PSARL was associated with increased plasma insulin concentration, a key risk factor for diabetes. Furthermore, this variant interacted strongly with age to affect insulin levels, accounting for 5% of the variation in plasma insulin in elderly subjects.
Conclusions/interpretation Variation in PSARL sequence and/or expression may be an important new risk factor for type 2 diabetes and other components of the metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA. An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea, with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian giant crab Pseudocarcinns gigas (Crustacea: Decapoda: Menippidae) and the giant freshwater shrimp Macrobrachium rosenbergii (Crustacea: Decapoda: Palaemonidae). The Pse gigas and Mrosenbergii mitochondrial genomes are circular molecules, 15,515 and 15,772 bp in length, respectively, and have the same gene composition as found in other metazoans. The gene arrangement of M. rosenbergii corresponds with that of the presumed ancestral arthropod gene order, represented by Limulus polyphemus, except for the position of the tRNALeu(UUR) gene. The Pse. gigas gene arrangement corresponds exactly with that reported for another brachyuran, Portunus trituberculatus, and differs from the M. rosenbergii gene order by only the position of the tRNAHis gene. Given the relative positions of intergenic nonoding nucleotides, the “duplication/random loss” model appears to be the most plausible mechanism for the translocation of this gene. These data represent the first caridean and only the second brachyuran complete mtDNA sequences, and a source of information that will facilitate surveys of intraspecific variation within these commercially important decapod species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogenetic relationships among 32 individuals of Australian freshwater crayfish belonging to the Cherax destructor-complex were investigated using a dataset comprising sequences from four mitochondrial gene regions: the large subunit rRNA (16S rRNA), cytochrome oxidase I (COI), adenosine triphosphatase 6 (ATPase 6), and cytochrome oxidase III (COIII). A total of 1602 bp was obtained, and a combined analysis of the data produced a tree with strong support (bootstrap values 94–100%) for three divergent lineages, verifying the phylogenetic hypotheses of relationships within the C. destructor species-complex suggested in previous studies. Overall, sequences from the 16S rRNA gene showed the least variation compared to those generated from protein coding genes, which presented considerably greater levels of divergence. The level of divergence within C. destructor was found to be greater than that observed in other species of freshwater crayfish, but interspecific variation among species examined in the present study was similar to that reported previously.