46 resultados para METABOLITES

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The southern bent-wing bat (Miniopterus schreibersii bassanii) is an insectivorous, obligate cave dwelling species found in south-eastern South Australia and western Victoria, Australia. In recent times, the finger of blame for an apparent population decline at Bat Cave, Naracoorte (one of only two known maternity roosts for this species, the other being Starlight Cave, Warrnambool) has been pointed at pesticide use in the region, following the finding of organochlorine and organophosphate insecticide residues in bat guano. This study sampled juvenile southern bent-wing bats from Bat Cave and Starlight Cave, and determined DDT, DDD and DDE concentrations in liver, pectoral muscle, brain and back-depot fat tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of selected clinically important neurotransmitter metabolites with acidic potassium permanganate in the presence of polyphosphates evokes chemiluminescence of sufficient intensity to enable the sensitive determination of these species. Limits of detection for 5-hydroxyindole-3-acetic acid (5-HIAA), vanilmandelic acid (VMA; α,4-dihydroxy-3-methoxybenzeneacetic acid), 4-hydroxy-3-methoxyphenylglycol (MHPG), homovanillic acid (HVA, 4-hydroxy-3-methoxyphenylacetic acid) and 3,4-dihydroxyphenylacetic acid (DOPAC) were between 5 × 10−9 and 4 × 10−8 M, using flow-injection analysis methodology. In addition, we demonstrate the rapid determination of homovanillic acid and 5-hydroxyindole-3-acetic acid in human urine – without the need for extraction procedures – using monolithic column chromatography with chemiluminescence detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed.

Hydrogen peroxide–zinc (H2O2–Zn), the fungus – Aspergillus niger and the bacteria – Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus–bacteria combined with H2O2–Zn, the concentration range of BaP in the cultures was 30–120 mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12 d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is neither comprehensive nor appropriate that the bioremediation of a benzo[a]pyrene (BaP)-contaminated environment be assessed only by its high degradation extent because its metabolites' chemical structures are similar to the parent compound and maybe equally toxic. Therefore, further degradation of BaP metabolites is significant. Three methods, combining the Zoogloea sp. with potassium permanganate, combining the Zoogloea sp. with H2O2, Zoogloea sp. alone, were investigated to degrade cis-BP4,5-dihydrodiol and cis-BP7,8-dihydrodiol, which are the metabolites of BaP formed by bacterium-Zoogloea sp. Optimum parameters of degradation in the best method are that: of the three methods, coupling the Zoogloea sp. and KMnO4 is the best; compared with cis-BP7,8-dihydrodiol, cis-BP4,5-dihydrodiol is the more liable to be accumulated in pure cultures; the degradation effect of the two metabolites is optimal when the initial concentration of KMnO4 in the cultures is 0.05%; initial concentration of cis-BP4,5-dihydrodiol and cis-BP7,8-dihydrodiol is 4 mg L−1, 8 mg L−1, respectively; cometabolic substance is salicylic acid or sodium succinate. The degradation extent of cis-BP4,5-dihydrodiol and cis-BP7,8-dihydrodiol using combining the Zoogloea sp. and KMnO4 reach 76.1% and 85.9% after 12 days of cultivation, respectively, which were more than twice compared with conventional method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil-borne pathogen, Phytophthora cinnamomi, continues to cause severe dieback in Australian native forest species and is of great international significance due to its global distribution. This research established a protocol to successfully identify phyto-chemicals associated with the defense response of plants challenged by the disease caused by Phytophthora cinnamomi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Increasing prevalence of obesity and overweight in the Western world, continue to be a major health threat and is responsible for increased health care costs. Dietary intervention studies show a strong positive association between saturated fat intake and the development of obesity and cardiovascular disease. This study investigated the effect of positional distribution of palmitic acid (Sn-1, 2 & 3) of palm oil on cardiovascular health and development of obesity, using weaner pigs as a model for young children.

Methods: Male and female weaner piglets were randomly allocated to 4 dietary treatment groups: 1) pork lard (LRD); 2) natural palm olein (NPO); 3) chemically inter-esterified PO (CPO) and 4) enzymatically inter-esterified PO (EnPO) as the fat source. Diets were formulated with 11% lard or with palm olein in order to provide 31% of digestible energy from fat in the diet and were balanced for cholesterol, protein and energy across treatments.

Results: From 8 weeks onwards, pigs on EnPO diet gained (P < 0.05) more weight than all other groups. Feed conversion efficiency (feed to gain) over the 12 week experimental period did not vary between treatment groups. Plasma LDL-C content and LDL-C/HDL-C ratio in pigs fed natural PO tended to be lower compared to all other diets. The natural PO lowered (P < 0.02) the plasma triglyceride (TG) content relative to the lard or EnPO diets, but was not different from the CPO diet. The natural PO diet was associated with lower (P < 0.05) saturated fat levels in subcutaneous adipose tissue than the CPO and EnPO diets that had lower saturated fat levels than the lard diet. Female pigs had lower lean and higher fat and fat:lean ratio in the body compared with male pigs. No difference in weight gain or blood lipid parameters was observed between sexes.

Conclusions: The observations on plasma TG, muscle and adipose tissue saturated fatty acid contents and back fat (subcutaneous) thickness suggest that natural palm oil may reduce deposition of body fat. In addition, dietary supplementation with natural palm oil containing palmitic acid at different positions in meat producing animals may lead to the production of meat and meat products with lower saturated fats. An increase in fat content and a decrease in lean content in female pigs resulted in an increased body fat:lean ratio but gender had no effect on blood lipid parameters or insulin concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to discover phytochemicals that are potentially bioactive against Phytophthora cinnamomi, (a soil-borne plant pathogen) a metabolite profiling protocol for investigation of metabolic changes in Lupinus angustifolius L. plant roots in response to pathogen challenge has been established. Analysis of the metabolic profiles from healthy and P. cinnamomi-inoculated root tissue with high resolution mass spectrometry and nuclear magnetic resonance spectroscopy confirmed that although susceptible, L. angustifolius upregulated a defence associated genistein and 2′-hydroxygenistein-based isoflavonoid and a soyasapogenol saponin at 12h post inoculation which increased in concentration at 72h post inoculation. In contrast to the typical susceptible interaction, the application of a phosphorous-based treatment to L. angustifolius foliage 48h before P. cinnamomi challenge negated the ability of the pathogen to colonise the root tissue and cause disease. Importantly, although the root profiles of water-treated and phosphite-treated plants post pathogen inoculation contained the same secondary metabolites, concentration variations were observed. Accumulation of secondary metabolites within the P. cinnamomi-inoculated plants confirms that pathogen ingress of the root interstitially occurs in phosphite-treated plants, confirming a direct mode of action against the pathogen upon breaching the root cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10−8 to 2.5 × 10−7 M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the relative contribution of cell-surface components (CSC) and cell-free supernatants (CFS) in the immuno-modulatory properties of 17 strains of probiotic and lactic acid bacteria (LAB) was assessed. The production of pro- and antiinflammatory cytokines including IL-2, IL-4, IL-10, IL-12 p70, IFN-γ, tumor necrosis factor-α (TNF-α), and transforming growth factor-β was measured at different time points after stimulation of buffy coat derived-peripheral blood mononuclear cells (PBMC) from healthy donors with CSC and CFS of probiotic and LAB. Results showed that CSC of probiotic and LAB strains induced production of T helper 1 and 2 type cytokines. Transforming growth factor-β was stimulated at highest concentrations, followed by IL-10 and TNF-α. The CFS of all tested bacterial strains induced PBMC for significantly high levels of IL-10 secretion compared with unstimulated cells, but the values were less than lipopolysaccharide-stimulated cells. Cytokines due to CFS stimulation showed declined concentration for IL-2, TNF-α, and IL-4, and complete disappearance of IL-12, IFN-γ, and transforming growth factor-β in the cultured medium at 96 h of incubation. Results of cytokine data demonstrate proinflammatory TNF-α immune responses are mainly directed through cell-surface structures of probiotic and LAB, but antiinflammatory immune responses are mediated both by metabolites and cell-surfaces of these bacteria. The induction of CD4(+)CD25(+) regulatory T cells after stimulation of PBMC with CSC and CFS of probiotic and LAB showed regulatory T cell activity appeared to be influenced both by the CSC and metabolites, but was principally triggered by cell surfaces of probiotic and LAB strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Mycorrhiza, a symbiotic soil fungus was identified as a biotic elicitor of antioxidant compounds found in the plant roots. In vitro developed technique and bioresources carry potential towards formation of biological and biochemical factories for application in the agricultural and pharmaceutical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The research has made significant addition to the knowledge of the role of mycorrhizas as an elicitor for the production of secondary metabolites in three plant species along with extraction techniques that have paved the way for a feasible method of continuous supply of secondary metabolites while maintaining viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.