3 resultados para MEASUREMENT UNCERTAINTY

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mass (e.g. carbon) transfer coefficient at a workpiece surface is an important kinetic factor to control the heat treatment process of the workpiece and to evaluate heat treatment equipment. The coefficient can be calculated from the carbon concentration at the surface of a sample carburized in a carburizing furnace for a given time. Two common measurement methods which use a thin plate and employ a component as samples respectively are evaluated and compared for sensitivity and uncertainty. The comparison shows that the use of a component produces higher measurement precision and also has the advantage in measuring the carbon transfer coefficients at different treated positions. This method is then extended and discussed methodologically. Also two equations are proposed to calculate the carbon transfer coefficient and its uncertainty, respectively. This method is also applied to measure the carbon transfer coefficient in a fluidized bed heat treatment furnace.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Use of the Global Positioning System (GPS) for quantifying athletic performance is common in many team sports. The effect of running velocity on measurement validity is well established, but the influence of rapid directional change is not well understood in team sport applications. This effect was systematically evaluated using multidirectional and curvilinear adaptations of a validated soccer simulation protocol that maintained identical velocity profiles. Team sport athletes completed 90 min trials of the Loughborough Intermittent Shuttle-running Test movement pattern on curvilinear, and multidirectional shuttle running tracks while wearing a 5 Hz (with interpolated 15 Hz output) GPS device. Reference total distance (13 200 m) was systematically over- and underestimated during curvilinear (2.61±0.80%) and shuttle (-3.17±2.46%) trials, respectively. Within-epoch measurement uncertainty dispersion was widest during the shuttle trial, particularly during the jog and run phases. Relative measurement reliability was excellent during both trials (Curvilinear r = 1.00, slope = 1.03, ICC = 1.00; Shuttle r = 0.99, slope = 0.97, ICC = 0.99). Absolute measurement reliability was superior during the curvilinear trial (Curvilinear SEM = 0 m, CV = 2.16%, LOA ± 223 m; Shuttle SEM = 119 m, CV = 2.44%, LOA ± 453 m). Rapid directional change degrades the accuracy and absolute reliability of GPS distance measurement, and caution is recommended when using GPS to quantify rapid multidirectional movement patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on a quantitative exposure assessment and on an analysis of the attributes of the data used in the estimations, in particular distinguishing between its uncertainty and variability. A retrospective assessment of exposure to benzene was carried out for a case control study of leukaemia in the Australian petroleum industry. The study used the mean of personal task-based measurements (Base Estimates) in a deterministic algorithm and applied factors to model back to places, times etc for which no exposure measurements were available. Mean daily exposures were estimated, on an individual subject basis, by summing the task-based exposures. These mean exposures were multiplied by the years spent on each job to provide exposure estimates in ppm-years. These were summed to provide a Cumulative Estimate for each subject. Validation was completed for the model and key inputs. Exposures were low, most jobs were below TWA of 5 ppm benzene. Exposures in terminals were generally higher than at refineries. Cumulative Estimates ranged from 0.005 to 50.9 ppm-years, with 84 percent less than 10 ppm-years. Exposure probability distributions were developed for tanker drivers using Monte Carlo simulation of the exposure estimation algorithm. The outcome was a lognormal distribution of exposure for each driver. These provide the basis for alternative risk assessment metrics e.g. the frequency of short but intense exposures which provided only a minimal contribution to the long-term average exposure but may increase risk of leukaemia. The effect of different inputs to the model were examined and their significance assessed using Monte Carlo simulation. The Base Estimates were the most important determinant of exposure in the model. The sources of variability in the measured data were examined, including the effect of having censored data and the between and within-worker variability. The sources of uncertainty in the exposure estimates were analysed and consequential improvements in exposure assessment identified. Monte Carlo sampling was also used to examine the uncertainties and variability associated with the tanker drivers' exposure assessment, to derive an estimate of the range and to put confidence intervals on the daily mean exposures. The identified uncertainty was less than the variability associated with the estimates. The traditional approach to exposure estimation typically derives only point estimates of mean exposure. The approach developed here allows a range of exposure estimates to be made and provides a more flexible and improved basis for risk assessment.