15 resultados para Lignocellulosic ethanol

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate the effect of different patterns of high-frequency stimulation at the nucleus accumbens shell on ethanol preference and circadian locomotor activity in adult male alcohol preferring (P) and nonpreferring (NP) rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated a new metal oxides based chemiresistor (MOC), which exhibits fast response/recovery behavior, large sensitivity, and good selectivity to ethanol, enabled by Sr-doped SnO2 nanofibers via simple electrospinning and followed by calcination. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS) were carefully used to characterize their morphology, structure, and composition. The ethanol sensing performances based on Sr-doped SnO2 nanofibers were investigated. Comparing with the pristine SnO2 nanofibers, enhanced ethanol sensing performances (more rapid response/recovery behavior and larger response values) have been achieved owing to the basic SnO2 surface caused by Sr-doping, whereas the acetone sensing performances have been weakened. Thus, good discriminative ability to ethanol from acetone has been realized. Additionally, Sr-doped SnO2 nanofibers also exhibit good selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous applications of manganese(IV) as a chemiluminescence reagent have required the use of formaldehyde to enhance the emission intensity to analytically useful levels. However, this known human carcinogen (by inhalation) is not ideal for routine application. A wide range of alternative enhancers have been examined but to date none have been found to provide the dramatic increase in chemiluminescence intensities obtained using formaldehyde. Herein, we demonstrate that ethanol offers a simple, safe and inexpensive alternative to the use of formaldehyde for manganese(IV) chemiluminescence detection, without compromising signal intensity or sensitivity. For example, chemiluminescence signals for opiate alkaloids using 50-100% ethanol were 0.8-1.6-fold those using 2M formaldehyde. This innocuous alternative enhancer is shown to be a particularly effective for the direct detection of thiols and disulfides by manganese(IV) chemiluminescence, which we have applied to a simple HPLC procedure to determine a series of biomarkers of oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, optical sensing performance of tapered multimode fiber tip coated with graphene oxide (GO) nanostructured thin film towards aqueous ethanol with different concentrations is investigated. The tapering process of the optical fiber is done by a glass processing machine. The multimode optical fiber tip is dip-coated with GO and annealed at 70 °C to enhance the binding of the nanomaterials to the silica fiber. FESEM, Raman microscopy and XRD analyses are performed to micro-characterize the GO thin films. The morphology of the GO is observed to be in sheets forms. The reflectance response of the GO coated fiber tip is compared with the uncoated tip. The measurements are taken using a spectrophotometer in the optical wavelength range of 550-720 nm. The reflectance response of the GO coated fiber tip reduced proportionally, upon exposure to ethanol with concentration range of 5-80%. The dynamic response of the developed sensor showed strong reversibility and repeatability when it is exposed to ethanol with concentrations of 5%, 20% and 40% in distilled water. At room temperature, the sensor shows fast response and recovery as low as 19 and 25 s, respectively. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 This project is based on production of biofuel from lignocellulosic waste. Hemp hurds were used for the production of ethanol. This was achieved by treating hemp at high temperature followed by enzymatic reaction and fermentation. Different techniques were used to detect the changes occurred on hemp structure and product quantification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow electrospun V2O5 and Au/V2O5 nanotubes have been successfully synthesized by combining emulsion electrospinning (EE) and post calcination treatment. Immiscible polyvinyl pyrrolidone (PVP)/metal salts/dimethylformamide (DMF) solution and polystyrene (PS)/DMF solution are chosen for the EE to form PS PVP/metal salts) core-sheath nanofibers, in which PS nanorods were formed and encapsulated within in the PVP/metal salts nanofibers owing to the stretching forces and de-emulsified force during the electrospinning. Excellent sensitivity and rapid response-recovery behaviors against ethanol have been successfully achieved based on our hollow ceramic (V2O5 and Au/V2O5) nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ~110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability. Numerical modelling to investigate the sensitivity of ethanol combustion has also been performed. It has been shown that ethanol combustion is sensitive to the initial air temperature around the feasible operating conditions of the engine. Moreover, a negative temperature coefficient region of approximately 900{1050 K (the approximate temperature at fuel injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical modelling. A consequence of this is that the dominate effect influencing the ignition delay under increasing ethanol substitutions may rather be from an increase in chemical reactions and not from in-cylinder temperature. Further investigation revealed that the chemical reactions at low ethanol substitutions are different compared to the high (> 20%) ethanol substitutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shohat-Ophir et al. (1) demonstrate a connection between sexual behaviour and ethanol consumption in male Drosophila flies, and how the neuropeptide F system regulates ethanol preference. Their results are rightly discussed only in a physiological context, but this has facilitated erroneous anthropomorphic interpretations by the media. Here we discuss the link between male sexual behaviour and ethanol consumption from an evolutionary perspective, providing a broader context to interpret their results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.