20 resultados para Latent TGF-beta Binding Proteins

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular lipids frequently co-purify with lipid binding proteins isolated from tissue extracts or heterologous host systems and as such hinder in vitro ligand binding approaches for which the apo-protein is a prerequisite. Here we present a technique for the complete removal of unesterified fatty acids, phospholipids, steroids and other lipophilic ligands bound to soluble proteins, without protein denaturation. Peroxisome proliferator activated receptor gamma ligand binding domain and intracellular fatty acid binding proteins were expressed in an Escherichia coli host and completely delipidated by hydrophobic interaction chromatography using phenyl sepharose. The delipidation procedure operates at room temperature with complete removal of bound lipids in a single step, as ascertained by mass spectrometry analysis of organic solvent extracts from purified protein samples. The speed and capacity of this method makes it amenable to scale-up and high-throughput applications. The method can also easily be adapted for other lipid binding proteins that require delipidation under native conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) is still a major public health issue in developing countries, and its chemotherapy is compromised by poor drug compliance and severe side effects. This study aimed to synthesize and characterize new multimodal PEGylated liposomes encapsulated with clinically commonly used anti-TB drugs with linkage to small interfering RNA (siRNA) against transforming growth factor-β1 (TGF-β1). The novel NP-siRNA liposomes could target THP-1-derived human macrophages that were the host cells of mycobacterium infection. The biological effects of the NP-siRNA liposomes were evaluated on cell cycle distribution, apoptosis, autophagy, and the gene silencing efficiency of TGF-β1 siRNA in human macrophages. We also explored the proteomic responses to the newly synthesized NP-siRNA liposomes using the stable isotope labeling with amino acids in cell culture approach. The results showed that the multifunctional PEGylated liposomes were successfully synthesized and chemically characterized with a mean size of 265.1 nm. The novel NP-siRNA liposomes functionalized with the anti-TB drugs and TGF-β1 siRNA were endocytosed efficiently by human macrophages as visualized by transmission electron microscopy and scanning electron microscopy. Furthermore, the liposomes showed a low cytotoxicity toward human macrophages. There was no significant effect on cell cycle distribution and apoptosis in THP-1-derived macrophages after drug exposure at concentrations ranging from 2.5 to 62.5 μg/mL. Notably, there was a 6.4-fold increase in the autophagy of human macrophages when treated with the NP-siRNA liposomes at 62.5 μg/mL. In addition, the TGF-β1 and nuclear factor-κB expression levels were downregulated by the NP-siRNA liposomes in THP-1-derived macrophages. The Ingenuity Pathway Analysis data showed that there were over 40 signaling pathways involved in the proteomic responses to NP-siRNA liposome exposure in human macrophages, with 160 proteins mapped. The top five canonical signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic cells prevent copper-induced, free radical damage to cell components by employing copper-binding proteins and transporters that minimize the likelihood of free copper ions existing in the cell. In the cell, copper is actively transported from the cytoplasm during the biosynthesis of secreted coppercontaining proteins and, as a protective measure, when there is an excess of copper. In humans, this is accomplished by two related copper-transporting ATPases (ATP7A and ATP7B), which are the affected genes in two distinct human genetic disorders of copper transport, Menkes disease (copper deficiency) and Wilson disease (copper toxicosis). The study of these ATPases has revealed their molecular mechanisms of copper transport and their roles in physiological copper homeostasis. Both ATP7A and ATP7B are expressed in specific brain regions and neurological abnormalities are important clinical features in Menkes and Wilson disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-β-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer’s disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer’s disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer’s disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein—intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation of beta amyloid (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease. Aβ can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Aβ binding to membranes. Aβ peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Aβ peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Aβ peptides and their membrane binding. 'Ageing' the Aβ peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Aβ analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Aβ to purified plasma membrane preparations but also reduced Aβ toxicity. The results support the view that Aβ toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Aβ-membrane binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL- 10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch signaling is essential for myogenesis and the regenerative potential of skeletal muscle: however, its regulation in human muscle is yet to be fully characterized. Increased expression of Notch3, Jagged1. Hes1, and Hes6 gene transcripts were observed during differentiation of cultured human skeletal muscle cells. Furthermore, significantly lower expressions of Notch1, Jagged1, Numb, and Delta-like 1 were evident in muscle biopsies from older men (60-75 years old) compared to muscle from younger men (18-25 years old). Importantly, with supervised resistance exercise training, expression of Notch1 and Hes6 genes were increased and Delta-like 1 and Numb expression were decreased. The differences in Notch expression between the age groups were no longer evident following training. These results provide further evidence to support the role of Notch in the impaired regulation of muscle mass with age and suggest that some of the benefits provided by resistance training may be mediated through the Notch signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular zinc homeostasis is strictly regulated by zinc binding proteins and zinc transporters. In the present study, we quantified in a first global view the expression of all characterized human zinc exporters (hZnT-1-9) in different leukocyte subsets in response to zinc supplementation and depletion and analyzed their influence on alterations in the intracellular zinc concentration. We found that hZnT-1 is the most regulated zinc exporter. Furthermore, we discovered that hZnT-4 is localized in the plasma membrane similar to hZnT-1. hZnT-4 is most highly expressed in Molt-4, up-regulated after treatment with PHA and is responsible for the measured decrease of intracellular zinc content after high zinc exposure. In addition, we found that hZnT-5, hZnT-6, and hZnT-7 in Raji as well as hZnT-6 and hZnT-7 in THP-1 are up-regulated in response to cellular zinc depletion. Those zinc exporters are all localized in the Golgi network, and this type of regulation explains the observed zinc increase in both cell types after up-regulation of their expression during zinc deficiency and, subsequently, high zinc exposure. Furthermore, we detected, for the first time, the expression of hZnT-8 in peripheral blood lymphocytes, which varied strongly between individuals. While hZnT-2 was not detectable, hZnT-3 and hZnT-9 were expressed at low levels. Further on, the amount of expression was higher in primary cells than in cell lines. These data provide insight into the regulation of intracellular zinc homeostasis in cells of the immune system and may explain the variable effects of zinc deficiency on different leukocyte subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defects in fat metabolism are central to the aetiology and pathogenesis of obesity and type II diabetes. The liver plays a central role in these disease states via its regulation of glucose and fat metabolism. In addition, accumulation of fat within the liver has been associated with changes in key pathways of carbohydrate and fat metabolism. However a number of questions remain. It is hypothesised that fat accumulation within the liver is a primary defect in the aetiology and pathogenesis of obesity and type II diabetes. Fat accumulating in the liver is the result of changes in the gene expression of key enzymes and proteins involved with fat uptake, fat transport, fat oxidation, fat re-esterification or storage and export of fat from the liver and these changes are regulated by key lipid responsive transcription factors. To study these questions Psammomys obesus was utilised. This polygenic rodent model of obesity and type II diabetes develops obesity and diabetes in a similar pattern to susceptible human populations. In addition dietary and environmental changes to Psammomys obesus were employed to create different states of energy balance, which allowed the regulation of liver fat gene expression to be examined. These investigations include: 1) Measurement of fat accumulation and fatty acid binding proteins in lean, obese and diabetic Psammomys obesus. 2) Characterisation of hepatic lipid enzymes, transport protein and lipid responsive transcription factor gene expression in lean, obese and diabetic Paammomys obesus. 3) The effect of acute and chronic energy restriction on hepatic lipid metabolism in Psammomys obesus. 4) The effect of sucrose feeding on the development of obesity and type II diabetes in Psammomys obesus. 5) The effect of nicotine treatment in lean and obese Psammomys obesus, 6) The effect of high dose leptin administration on hepatic fat metabolism in Psammomys obesus. The results of these studies demonstrated that fat accumulation within the liver was not a primary defect in the aetiology and pathogenesis of obesity and type II diabetes. Fat accumulating in the liver was not the result of changes in the gene expression of key enzymes and proteins involved in hepatic fat metabolism. However changes in the mRNA level of the transcription factors PPAR∝ and SREBP-1C was associated with the development of diabetes and the gene expression of these two transcription factors was associated with changes in diabetic status.