70 resultados para LIVER-REGENERATION

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolin-1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null (Balb/CCAV1−/−) mice, CAV1−/− mice from Jackson Laboratories (JAXCAV1−/−), and CAV1−/− mice developed in the Kurzchalia Laboratory (KCAV1−/−), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate-dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1-knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in KCAV1−/− livers, in JAXCAV1−/− livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2-deoxy-glucose in JAXCAV1−/− mice indicated that liver regeneration in JAXCAV1−/− mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating JAXCAV1−/− livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet-induced steatosis in the three CAV1−/− mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. Conclusion: Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lifestyle factors other than alcohol intake can lead to insidious outcomes from this surprisingly common condition. Assoc Prof David Cameron-Smith reviews current and potential management strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of titania/silica pellets were prepared using the sol-gel method with surface areas of 50.4m2 g-1, 421.1m2.g-1 and 89.1m2.g-1. An annular reactor was designed and built to determine the degradation efficiency of toluene and to investigate the relationship between the adsorption and desorption-photocatalytic processes. Surface area is an important factor influencing the adsorption-photocatalytic efficiency. Higher surface areas of pellets contribute to high rates of conversion of toluene. Un-reacted toluene and reaction intermediates accumulating on their surface deactivated the titania/silica catalyst. To overcome this problem, the adsorption and regeneration process were alternated in a dual reactor system. Connecting or disconnecting the toluene feed gas enabled one reactor to adsorb toluene, while the second reactor was regenerated by photocatalysis. Using UV irradiation and titania/silica pellets with high BET surface area (421.1 m2.g-1), the alternating adsorption/regeneration processes kept the degradation efficiency of toluene at 90% after 8 hours operation. By improving the adsorption-photocatalysis efficiency, and minimising the generation and accumulation of intermediate on the surface of pellets, the method extended catalyst life and maintained a high degradation efficiency of toluene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lagoon of Islands was a unique ecosystem. Damming the lagoon in 1964 caused the decline of the ecosystem, destroying the original vegetation and, eventually, rendering the lagoon eutrophic. While this took place the lagoon was colonised by a macrophyte not previously noticed in the lagoon. In an effort to restore acceptable water quality, restoration of macrophyte cover was encouraged by hydrological manipulation. Recent investigations have revealed that one of the original dominant macrophyte species is recolonising the lagoon, creating an alternative management option for the lagoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aim: The toxic milk (tx) mouse is a non-fatal animal model for the metabolic liver disorder, Wilson's disease. The tx mouse has a mutated gene for a copper-transporting protein, causing early copper accumulation in the liver and late accumulation in other tissues. The present study investigated the efficacy of liver cell transplantation (LCT) to correct the tx mouse phenotype.

Methods: Congenic hepatocytes were isolated and intrasplenically transplanted into 3–4-month-old tx mice, which were then placed on various copper-loaded diets to examine its influence on repopulation by transplanted cells. The control animals were age-matched untransplanted tx mice. Liver repopulation was determined by comparisons of restriction fragment length polymorphism ratios (DNA and mRNA), and copper levels were measured by atomic absorption spectroscopy.

Results: Repopulation in recipient tx mice was detected in 11 of 25 animals (44%) at 4 months after LCT. Dietary copper loading (whether given before or after LCT, or both) provided no growth advantage for donor cells, with similar repopulation incidences in all copper treatment groups. Overall, liver copper levels were significantly lower in repopulated animals (538 ± 68 µg/g, n = 11) compared to non-repopulated animals (866 ± 62 µg/g, n = 14) and untreated controls (910 ± 103 µg/g, n = 6; P < 0.05). This effect was also seen in the kidney and spleen. Brain copper levels remained unchanged.

Conclusion: Transplanted liver cells can proliferate and correct a non-fatal metabolic liver disease, with some restoration of hepatic copper homeostasis after 4 months leading to reduced copper levels in the liver and extrahepatic tissues, but not in the brain.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Biliary tract infection is associated with high mortality. This study investigated the effect of glucocorticoid pretreatment on lipopolysaccharide (LPS)-induced cholangitis. Methods: Rats undergoing either sham operation or ligation of the extrahepatic bile duct (BDL) for 2 weeks were randomly assigned to receive intravenous injections of dexamethasone (DX) or normal saline (NS) prior to infusing LPS into the biliary tract. The plasma levels of tumor necrosis factor-α (TNFα), chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) as well as liver mRNA expression of MCP-1 and MIP-2 were determined. Infiltration of monocytes, Kupffer cells, and neutrophils in rat liver were studied with immunohistochemistry. Oxidative liver injury was measured by the malondialdehyde (MDA) content. Results: Dexamethasone pretreatment resulted in significantly decreased plasma levels of TNFα at 1 hour, MCP-1 and MIP-2 at 2 and 3 hours, and decreased liver MCP-1 mRNA expression at 3 hours following LPS infusion in BDL-DX rats than in BDL-NS rats. The number of inflammatory cells in the liver was significantly different between sham- and BDL-treated rats but was not affected by DX pretreatment. Pretreatment with DX resulted in significantly decreased liver MDA contents in the BDL-DX group than that in the BDL-NS group. Jaundiced rats pretreated with 5 mg DX prior to infusion of 1 g of LPS were 6.8 times more likely to survive than those that were not pretreated. Conclusions: Pretreatment of jaundiced, LPS-treated rats with a  supraphysiological dose of dexamethasone may rescue their lives by suppression of chemokine expression and alleviation of oxidative liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Intervention of the biliary system is frequently done in patients with obstructive jaundice and is associated with significant morbidity and mortality. The pathogenesis is unknown.
Materials and methods
A rat model of bile duct ligation (BDL) for 2 weeks was established in which biliary intervention was feasible by injection of normal saline through an indwelling catheter in the bile ducts. Plasma levels of C-C chemokine MCP-1 and C-X-C chemokine MIP-2 were measured by using ELISA. Blood monocytes, Kupffer cells, and neutrophils in the liver were characterized with antibodies to ED1, ED2, and myeloperoxidase (MPO). Lipid peroxidation was measured by malondialdehyde contents and apoptosis by TUNEL stain of the liver.
Results
Biliary intervention resulted in an increase of plasma MCP-1 and MIP-2 proteins by 1 h, which declined to normal level by 3 h in both sham and BDL rats. The levels in BDL rats were significantly higher than in sham at most points. There was a transient increase of ED1- and ED2-positive cells and MPO-staining cells in sham rat liver by 1 h after intervention. ED2-positive cells increased significantly by 1 h, while ED1- and MPO-positive cells decreased, yet insignificantly after intervention in BDL rats. The cell counts in BDL were constantly higher than in sham. Malondialdehyde increased precipitously in BDL by 3 h and was significantly higher than in sham throughout the study period. Parenchymal liver injury, manifested by elevated ALT, as well as apoptosis and necrosis of liver cells, was significantly increased in BDL rats, but not in sham rats.
Conclusion
Biliary intervention augments chemokine expression, precipitates lipid peroxidation, and aggravates liver injury in cholestatic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postoperative cholangitis is a frequent and unpredictable complication of unknown etiology following bile duct reconstruction (BDR), particularly for biliary atresia. This study was undertaken to correlate the growth of bacteria in the hepaticojejunostomy with that in the liver after BDR. Quantitative bacterial culture was done on the specimens taken from the liver and from the hepaticojejunostomy at 1 week (group 1, n = 7), 1 month (group 2, n = 7), and 2 months (group 3, n = 7) following BDR with Roux-en-Y hepaticojejunostomy in piglets after 2 weeks of common bile duct ligation. The histological examination of the liver and the hepaticojejunostomy, as well as serial monitoring of hemogram and liver function tests, were performed to correlate the findings with the bacterial concentration of the liver and the hepaticojejunostomy following BDR. The bacterial concentration of the hepaticojejunostomy, expressed as log10 colony-forming units per gram (log10 CFU/g) of the hepaticojejunostomy, showed a progressive decrease from 8.38 ± 1.36 in group 1, 7.07 ± 2.54 in group 2, to 3.56 ± 1.31 in group 3 (p = 0.001). The log10 CFU/g of the liver also showed a progressive decrease from 5.02 ± 1.59 in group 1, 3.16 ± 1.56 in group 2, to 2.19 ± 1.09 in group 3 (p = 0.006). There was a significant positive correlation of the log10 CFU/g of the liver (n = 21) with that of the hepaticojejunostomy (n = 21) following BDR (r = 0.600, p = 0.004). Most of the infectious pathogens isolated from the liver were also isolated from the hepaticojejunostomy. The changes in hemoglobin, bilirubin, albumin, and ammonia significantly correlated with the changes of the bacterial concentration of the liver. The results of the study suggests that hepatic bacterial proliferation after BDR is significantly affected by microbial overgrowth in the bilioenteric anastomosis and is associated with deteriorated liver function and hemogram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – It has been recognized that specific fatty acids have the ability to directly influence the abundance of gene transcripts in organs such as the liver. However little comparison has been made between the effects of common dietary of fatty acids and there influence on gene expression.
Objectives – To determine the effect of diets rich saturated, monounsaturated and polyunsaturated on gene transcripts associated with liver fat metabolism. Specifically how these three classes of fatty acids influence mRNA levels of key transcriptional regulators (PGC1a, PPARa, PPARd, SREBP1C & ChREBP), fat oxidative (ACO, LCPT1, HMG-CoA lyase & UCP-2) and fat synthetic (ACC, MCD, GPAT & malic enzyme) genes were investigated.
Design - Rats (n=32) were evenly divided into four groups; a saturated fat diet, a monounsaturated fat diet, a polyunsaturated fat diet (each diet contained 23% fat) and standard rat chow (7% fat) diet and fed for 12 weeks. Real-time PCR analysis was performed on liver tissue.
Outcomes – PGC1a and SREBP1C increased 1.9 fold or greater in all groups. Conversely, PPARa, PPARd and ChREBP demonstrated variable changes with diet composition. Monounsaturated and polyunsaturated fat increased HMG-CoA lyase 2.8 fold, a response that was absent in the saturated fat fed animals. UCP-2 was decrease 3.0 fold by all dietary treatments. Malic enzyme was increased 2.8 and 2.4 fold with saturated and polyunsaturated diets respectively, yet was unaltered by the monounsaturated fat diet.
Conclusion – Modifications in common dietary fat composition initiated divergent gene responses in liver. These alterations were complex, with no uniform alteration in transcription factors with closely related functions (PPARfamily) and genes encoding proteins within the same metabolic pathway (fat oxidation or fat synthesis). Further studies are necessary to identify the predominant mechanisms regulating these differences in gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – Squalene is a component of shark liver oil and has been speculated to have cholesterol reducing properties. High levels of total and LDL cholesterol have been shown to contribute to the development of chronic heart disease. The liver is central to the regulation of cholesterol metabolism and dietary intervention has long been recognized as a primary means to reduce the risks of chronic heart disease and related ailments.
Objectives – To determine the effect of dietary squalene supplementation on gene transcripts associated with liver cholesterol metabolism. Specifically the effect of squalene supplementation on mRNA levels for proteins that
regulate cholesterol biosynthesis (HMDH & ERG1), cholesterol elimination (SRB1), bile synthesis (CP7A1 & CP27A) and cholesterol excretion by the liver into bile (ABCG5 & ABCG8) was investigated.
Design – Rats (n=32) were divided into four groups and supplemented for 12 weeks. Groups one and two were fed a cholesterol rich diet for six weeks followed by six weeks of a cholesterol rich diet plus 1.75mg/day of squalene or 3.5 mg/day. Group three was fed a cholesterol rich diet for 12 weeks and group four was fed standard rat chow for 12 weeks. Blood lipid levels were monitored during the study and liver gene expression was determined at the
conclusion of the feeding trial via RT-PCR.
Outcomes – 3.5 mg/day of squalene lowered total and LDL cholesterol in rats consuming a cholesterol rich diet. This dose of squalene also resulted in constant levels of HMDH and ERG1 whereas the cholesterol rich diet halved mRNA levels of these enzymes. Furthermore 3.5 mg/day of squalene caused a greater than 3.0 fold increase in mRNA levels of the proteins SRB1, CP7A1, CP27A and ABCG5.
Conclusion – Dietary squalene supplementation at a dose of 3.5 mg/day lowers total and LDL cholesterol in rats consuming a cholesterol rich diet. These reductions in cholesterol levels may be due to increased cholesterol
elimination, bile synthesis and cholesterol excretion by the liver into bile mediated by changes in gene expression of key enzymes involved in these metabolic pathways

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daylight is an essential contextual ingredient of place making. Research in daylighting has recently received major attention for its valuable contribution to the sustainability of the built environment. Previous research has investigated the role of daylighting in energy efficiency, its regional qualities in relation to the façade configuration, and its contribution to the sense of visual comfort. This paper argues that appropriate use of daylighting will ensure not only visual and thermal comfort in an urban setting, but also contributes to the place identity and hence sustainability of urban regeneration projects. The paper identifies the daylight variables that affect the success of the regeneration of heritage sites in Eastern Mediterranean. Daylight variables in public open spaces include a combination of sunlight, skylight and the reflected light from the facades and the ground. The Solar altitude, the geometry of sectional profiles, the reflectance of the opposing facades, the width of the street and the density of the urban built environment are examined to simulate the daylight performance in the selected heritage sites. Located in the historical Darb al-Ahmar district, Aslam Square is selected as part of one of the rehabilitation project in Cairo. This paper examines the photometric and morphological properties of the existing configuration using daylight simulation software. Various spherical projections were developed to represent full 3D visual environment. The paper calculates and analyses the direct radiation energy, the sky diffused energy and the reflected energy in the case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in the cytosolic solubilization of fatty acids during fat absorption. In the current studies, the interaction of L-FABP with a range of lipophilic drugs has been evaluated to explore the potential for L-FABP to provide an analogous function during the absorption of lipophilic drugs. Binding affinity for L-FABP was assessed by displacement of a fluorescent marker, 1-anilinonaphthalene-8-sulfonic acid (ANS), and the binding site location was determined via nuclear magnetic resonance chemical shift perturbation studies. It was found that the majority of drugs bound to L-FABP at two sites, with the internal site generally having a higher affinity for the compounds tested. Furthermore, in contrast to the interaction of L-FABP with fatty acids, it was demonstrated that a terminal carboxylate is not required for specific binding of lipophilic drugs at the internal site of L-FABP.