35 resultados para L-ARGININE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72 ± 1% VO2 peak followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-2H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCl (L-Arg, 30 g at 0.5 g/min) was coinfused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1 ± 1.8 ml·min–1·kg–1; CON: 11.9 ± 0.7 ml·min–1·kg–1 at 120 min, P < 0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We have previously shown that local infusion of a nitric oxide synthase (NOS) inhibitor attenuates increases in leg glucose uptake during exercise in humans. We have also shown that infusion of the NOS substrate, L-arginine (L-Arg), increases glucose clearance, although the mechanisms involved were not determined. A potential mechanism for NO-mediated glucose disposal is via interactions with NOS and the energy sensor AMPactivated protein kinase (AMPK). The aim of this study was to determine the mechanism(s) by which L-Arg infusion increases glucose disposal during exercise in humans by examining total NOS activity and AMPK signaling.

Methods: Seven males cycled for 120 min at 64% T 1% V˙ O2peak, during which the [6,6-2H]glucose tracer was infused. During the final 60 min of exercise, either saline alone (Control, CON), or saline containing L-Arg HCl (L-Arg, 30 g at 0.5 gIminj1) was coinfused in a double-blind, randomized, counterbalanced order.

Results: L-Arg increased the glucose rate of disappearance and glucose clearance rate during exercise; however, this was accompanied by a 150% increase in plasma insulin concentration from 65 to 75 min (P G 0.05) that remained significantly elevated until 90 min of exercise. Skeletal muscle AMPK signaling, nNOSK phosphorylation by AMPK, and total NOS activity increased to a similar extent in the two trials.

Conclusions: The increase in glucose disposal after L-Arg infusion during exercise is likely due to the significantly higher plasma insulin concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background— Endothelial dysfunction because of reduced nitric oxide bioavailability is a key feature of essential hypertension. We have found that normotensive siblings of subjects with essential hypertension have impaired endothelial function accompanied by altered arginine metabolism.

Methods and Results— We have identified a novel C/T polymorphism in the 3′UTR of the principal arginine transporter, solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 gene (SLC7A1). The minor T allele significantly attenuates reporter gene expression (P<0.01) and is impaired in its capacity to form DNA-protein complexes (P<0.05). In 278 hypertensive subjects the frequency of the T allele was 13.3% compared with 7.6% in 498 normotensive subjects (P<0.001). Moreover, the overall genotype distribution observed in hypertensives differed significantly from that in normotensives (P<0.001). To complement these studies, we generated an endothelial-specific transgenic mouse overexpressing l-arginine transporter SLC7A1. The Slc7A1 transgenic mice exhibited significantly enhanced responses to the endothelium-dependent vasodilator acetylcholine (−log EC50 for wild-type versus Slc7A1 transgenic: 6.87±0.10 versus 7.56±0.13; P<0.001). This was accompanied by elevated production of nitric oxide by isolated aortic endothelial cells.

Conclusions— The present study identifies a key, functionally active polymorphism in the 3′UTR of SLC7A1. As such, this polymorphism may account for the apparent link between altered endothelial function, l-arginine, and nitric oxide metabolism and predisposition to essential hypertension.