12 resultados para KNOCKOUT MICE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catecholamines are viewed as major stimulants of diet- and cold-induced thermogenesis and of fasting-induced lipolysis, through the β-adrenoceptors (β1/β2/β3). To test this hypothesis, we generated β1/β2/β3-adrenoceptor triple knockout (TKO) mice and compared them to wild type animals. TKO mice exhibited normophagic obesity and cold-intolerance. Their brown fat had impaired morphology and lacked responses to cold of uncoupling protein-1 expression. In contrast, TKO mice had higher circulating levels of free fatty acids and glycerol at basal and fasted states, suggesting enhanced lipolysis. Hence, β-adrenergic signalling is essential for the resistance to obesity and cold, but not for the lipolytic response to fasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1−/− mice (1 week: wt, 38.8 ± 7.75%; LKB1−/−, 27.8 ± 12.98%; 4 week: wt, 75.8 ± 15.2%; LKB1−/−, 85.0 ± 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the α1 isoform of AMPK were markedly increased in both the wt and the LKB1−/− mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca2+–calmodulin-dependent protein kinase kinase α(CaMKKα) (5.05 ± 0.86-fold) and CaMKKβ (10.1 ± 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the α1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the α1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the α1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI). ADAMTS-derived 50-60 kDa aggrecan and 50 kDa brevican fragments were observed in Adamts4-/-, Adamts5-/-, and wt mice but not in the sham-operated group. By contrast Adamts4-/- and Adamts5-/- mice were both protected from versican proteolysis with an ADAMTS-generated 70 kDa versican fragment predominately observed in WT mice. ADAMTS1, ADAMTS9, and ADAMTS15 were detected by Western blot in Adamts4-/- mice' spinal cords after SCI. Immunohistochemistry showed astrocyte accumulation at the injury site. These data indicate that aggrecan and brevican proteolysis is compensated in Adamts4-/- or Adamts5-/- mice by ADAMTS proteoglycanase family members but a threshold of versican proteolysis is sensitive to the loss of a single ADAMTS proteoglycanase during SCI. We show robust ADAMTS activity after SCI and exemplify the requirement for collective proteolysis for effective CSPG clearance during SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to investigate whether skeletal muscle from whole body creatine transporter (CrT; SLC6A8) knockout mice (CrT(-/y)) actually contained creatine (Cr) and if so, whether this Cr could result from an up regulation of muscle Cr biosynthesis. Gastrocnemius muscle from CrT(-/y) and wild type (CrT(+/y)) mice were analyzed for ATP, Cr, Cr phosphate (CrP), and total Cr (TCr) content. Muscle protein and gene expression of the enzymes responsible for Cr biosynthesis L-arginine:glycine amidotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) were also determined as were the rates of in vitro Cr biosynthesis. CrT(-/y) mice muscle contained measurable (22.3 ± 4.3 mmol.kg(-1) dry mass), but markedly reduced (P < 0.05) TCr levels compared with CrT(+/y) mice (125.0 ± 3.3 mmol.kg(-1) dry mass). AGAT gene and protein expression were higher (~3 fold; P < 0.05) in CrT(-/y) mice muscle, however GAMT gene and protein expression remained unchanged. The in vitro rate of Cr biosynthesis was elevated 1.5 fold (P < 0.05) in CrT(-/y) mice muscle. These data clearly demonstrate that in the absence of CrT protein, skeletal muscle has reduced, but not absent, levels of Cr. This presence of Cr may be at least partly due to an up regulation of muscle Cr biosynthesis as evidenced by an increased AGAT protein expression and in vitro Cr biosynthesis rates in CrT(-/y) mice. Of note, the up regulation of Cr biosynthesis in CrT(-/y) mice muscle was unable to fully restore Cr levels to that found in wild type muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipase C-β1 (PLC-β1) is a critical component of multiple signalling pathways downstream of neurotransmitter receptors. Mice lacking this enzyme display a striking behavioural phenotype with relevance to human psychiatric disease. Glutamatergic dysfunction is strongly associated with several abnormal behavioural states and may underlie part of the phenotype of the phospholipase C-β1 knockout (KO) mouse. A heightened response to glutamatergic psychotomimetic drugs is a critical psychosis-related endophenotype, and in this study it was employed as a correlate of glutamatergic dysfunction. Control (n=8) and PLC-β1 KO mice (n=6) were treated with MK-801, a NMDA receptor (NMDAR) antagonist, following either standard housing or environmental enrichment, and the motor function and locomotor activity thus evoked was assessed. In addition, MK-801 binding to the NMDAR was evaluated through radioligand autoradiography in post-mortem tissue (on a drug-naive cohort). We have demonstrated a significantly increased sensitivity to the effects of the NMDA antagonist MK-801 in the PLC-β1 KO mouse. In addition, we found that this mouse line displays reduced hippocampal NMDAR expression, as measured by radioligand binding. We previously documented a reversal of specific phenotypes in this mouse line following housing in an enriched environment. Enrichment did not alter this heightened MK-801 response, nor NMDAR expression, indicating that this therapeutic intervention works on specific pathways only. These findings demonstrate the critical role of the glutamatergic system in the phenotype of the PLC-β1 KO mouse and highlight the role of these interconnected signalling pathways in schizophrenia-like behavioural disruption. These results also shed further light on the capacity of environmental factors to modulate subsets of these phenotypes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE-/-) and compared with wild-type littermates. Compared with wild-type littermates, ACE-/- mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE-/- mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE-/- mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excrete in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE-/- mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpα promoter. We find that C/ebpα is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpα promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing production of genetically-modified mouse models has necessitated studies to determine the inherent physiological characteristics of commonly used mouse strains. In this study we examined insulin secretory function in response to an intravenous bolus of glucose or glucose plus arginine in anesthetized C57BL/6, DBA/2 and 129T2 mice fed either a control or high fat diet for 6 weeks. The results show that 129T2 mice had higher fasting plasma glucose levels and lower fasting plasma insulin levels compared with C57BL/6 and DBA/2 mice regardless of diet. Furthermore, 129T2 mice were glucose intolerant and secreted significantly less insulin in response to glucose and glucose plus arginine irrespective of diet compared with the other two strains of mice. DBA/2 mice hypersecreted insulin in response to glucose and glucose plus arginine compared with C57BL/6 and 129T2 mice. Moreover while first phase insulin secretion was appropriately increased in response to the high fat diet in C57BL/6 and 129T2 mice, this was not the case for DBA/2 mice. Mean islet area was decreased in response to a high fat diet in DBA/2 mice, while there was no dietary effect on the other two strains. This study highlights the inherent genetic differences that exist among seemingly normal strains of mice that are commonly used to make transgenic and knockout mice. Understanding these differences will provide researchers with the information to choose the appropriate genetic background on which to express their particular genetic alteration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormalities in glutamatergic signalling are proposed in schizophrenia in light of the schizophreniform psychosis elicited by NMDA antagonists. The metabotropic glutamate receptor 5 (mGluR5) interacts closely with the NMDA receptor and is implicated in several behavioural endophenotypes of schizophrenia. We have demonstrated that mice lacking mGluR5 have increased sensitivity to the hyperlocomotive effects of the NMDA antagonist MK-801. Mice lacking mGluR5 also show abnormal locomotor patterns, reduced prepulse inhibition (PPI), and deficits on performance of a short-term spatial memory task on the Y-maze. Chronic administration of the antipsychotic drug clozapine ameliorated the locomotor disruption and reversed the PPI deficit, but did not improve Y-maze performance. Chronic clozapine increased NMDA receptor binding ([3H]MK-801) but did not alter dopamine D2 ([3H]YM-09151), 5-HT2A ([3H]ketanserin), or muscarinic M1/M4 receptor ([3H]pirenzepine), binding in these mice. These results demonstrate behavioural abnormalities that are relevant to schizophrenia in the mGluR5 knockout mouse and a reversal of behaviours with clozapine treatment. These results highlight both the interactions between mGluR5 and NMDA receptors in the determination of schizophreniform behaviours and the potential for the effects of clozapine to be mediated by NMDA receptor regulation.
Key words

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activity of the cholinergic muscarinic system is associated with modulation of locomotor activity, although the precise mechanism remains unclear. The phospholipase C-[beta]1 knockout mouse displays both M1 muscarinic receptor dysfunction and a hyperactive locomotor phenotype. This mouse serves as an ideal model for the analysis of muscarinic modulation of locomotor activity. The clozapine metabolite N-desmethylclozapine (NDMC) has shown some promise as an alternative or adjunct treatment for psychotic disorders. NDMC shows strong muscarinic acetylcholine receptor affinities, which may contribute to the clinical efficacy of clozapine and account for the correlation between NDMC/clozapine ratio and treatment response. Administration of NMDC reversed a striking hyperactive phenotype in the phospholipase C-[beta]1 knockout mouse, whereas no significant effects were observed in wild-type animals. This highlights the potential role of muscarinic activity in the behavioural response to NDMC. The M1 muscarinic antagonist pirenzepine, however, also reduced the hyperactive phenotype of these mice, emphasizing the importance of muscarinic function in the control of locomotor behaviour, but also calling into question the specific mechanism of action of NMDC at muscarinic receptors.