35 resultados para Intense Interval Exercise

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Na+-K+-ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+-K+-ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+-K+-ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased α1, α2, and α3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged ß-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and α3 and ß3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+-K+-ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in α1 and α3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+-K+-ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+-K+-ATPase activity postexercise may contribute to reduced fatigue after training. The Na+-K+-ATPase mRNA response to interval exercise of increased α - but not ß-mRNA was largely preserved posttrain, suggesting a functional role of α mRNA upregulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a cell signaling perspective, short-duration intense muscular work is typically associated with resistance training and linked to pathways that stimulate growth. However, brief repeated sessions of sprint or high-intensity interval exercise induce rapid phenotypic changes that resemble traditional endurance training. We tested the hypothesis that an acute session of intense intermittent cycle exercise would activate signaling cascades linked to mitochondrialbiogenesis in human skeletal muscle. Biopsies (vastus lateralis) were obtained from six young men who performed four 30-s "all out" exercise bouts interspersed with 4 min of rest (<80 kJ total work). Phosphorylation of AMP-activated protein kinase (AMPK; subunits {alpha}1 and {alpha}2) and the p38 mitogen-activated protein kinase (MAPK) was higher (P ≤ 0.05) immediately after bout 4 vs. preexercise. Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha}(PGC-1{alpha}) mRNA was increased approximately twofold above rest after 3 h of recovery (P ≤ 0.05); however, PGC-1{alpha}protein content was unchanged. In contrast, phosphorylation of protein kinase B/Akt (Thr308 and Ser473) tended to decrease, and downstream targets linked to hypertrophy (p70 ribosomal S6 kinase and 4E binding protein 1) were unchanged after exercise and recovery. We conclude that signaling through AMPK and p38 MAPK to PGC-1{alpha} may explain in part the metabolic remodeling induced by low-volume intense interval exercise, including mitochondrial biogenesis and an increased capacity for glucose and fatty acid oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-intensity interval exercise (HIIE) has gained popularity in recent years for patients with cardiovascular and metabolic diseases. Despite potential benefits, concerns remain about the safety of the acute response (during and/or within 24 hours postexercise) to a single session of HIIE for these cohorts. Therefore, the aim of this study was to perform a systematic review to evaluate the safety of acute HIIE for people with cardiometabolic diseases. Electronic databases were searched for studies published prior to January 2015, which reported the acute responses of patients with cardiometabolic diseases to HIIE (≥80% peak power output or ≥85% peak aerobic power, VO2peak). Eleven studies met the inclusion criteria (n = 156; clinically stable, aged 27-66 years), with 13 adverse responses reported (∼8% of individuals). The rate of adverse responses is somewhat higher compared to the previously reported risk during moderate-intensity exercise. Caution must be taken when prescribing HIIE to patients with cardiometabolic disease. Patients who wish to perform HIIE should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and have appropriate supervision and monitoring during and after the exercise session.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as a mediator of cytokine signaling and implicated in hypertrophy; however, the importance of this pathway following resistance exercise in human skeletal muscle has not been investigated. In the present study, the phosphorylation and nuclear localization of STAT3, together with STAT3-regulated genes, were measured in the early recovery period following intense resistance exercise. Muscle biopsy samples from healthy subjects (7 males, 23.0 + 0.9 yr) were harvested before and again at 2, 4, and 24 h into recovery following a single bout of maximal leg extension exercise (3 sets, 12 repetitions). Rapid and transient activation of phosphorylated (tyrosine 705) STAT3 was observed at 2 h postexercise. STAT3 phosphorylation paralleled the transient localization of STAT3 to the nucleus, which also peaked at 2 h postexercise. Downstream transcriptional events regulated by STAT3 activation peaked at 2 h postexercise, including early responsive genes c-FOS (800-fold), JUNB (38-fold), and c-MYC (140-fold) at 2 h postexercise. A delayed peak in VEGF (4-fold) was measured 4 h postexercise. Finally, genes associated with modulating STAT3 signaling were also increased following exercise, including the negative regulator SOCS3 (60-fold). Thus, following a single bout of intense resistance exercise, a rapid phosphorylation and nuclear translocation of STAT3 are evident in human skeletal muscle. These data suggest that STAT3 signaling is an important common element and may contribute to the remodeling and adaptation of skeletal muscle following resistance exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Sodium bicarbonate (NaHCO3) ingestion has been shown to increase both muscle glycogenolysis and glycolysis during brief submaximal exercise. These changes may be detrimental to performance during more prolonged, exhaustive exercise. This study examined the effect of NaHCO3 ingestion on muscle metabolism and performance during intense endurance exercise of ~60 min in seven endurance-trained men. Methods: Subjects ingested 0.3 g·kg-1 body mass of either NaHCO3 or CaCO3 (CON) 2 h before performing 30 min of cycling exercise at 77 ± 1% [latin capital V with dot above]O2peak followed by completion of 469 ± 21 kJ as quickly as possible (~30 min, ~80% [latin capital V with dot above]O2peak). Results: Immediately before, and throughout exercise, arterialized-venous plasma HCO3- concentrations were higher (P < 0.05) whereas plasma and muscle H+ concentrations were lower (P < 0.05) in NaHCO3 compared with CON. Blood lactate concentrations were higher (P < 0.05) during exercise in NaHCO3, but there was no difference between trials in muscle glycogen utilization or muscle lactate content during exercise. Reductions in PCr and ATP and increases in muscle Cr during exercise were also unaffected by NaHCO3 ingestion. Accordingly, exercise performance time was not different between treatments. Conclusion: NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Creatine (Cr) supplementation has been shown to attenuate increases in plasma ammonia and hypoxanthine during intense endurance exercise lasting 1 h, suggesting that Cr supplementation may improve muscle energy balance (matching of ATP resynthesis to ATP demand) during such exercise. We hypothesized that Cr supplementation would improve muscle energy balance (as assessed by muscle inosine monophosphate (IMP) accumulation) during intense endurance exercise.

Methods: Seven well-trained men completed two experimental trials involving approximately 1 h of intense endurance exercise (cycling 45 min at 78 ± 1% V̇O2peak followed by completion of 251 ± 6 kJ as quickly as possible (performance ride)). Subjects ingested approximately 42 g·d-1 dextrose for 5 d before the first experimental trial (CON), then approximately 21 g Cr monohydrate plus approximately 21 g·d-1 dextrose for 5 d before the second experimental trial (CREAT). Trials were ordered because of the long washout time for Cr. Subjects were blinded to the order of the trials.

Results: Creatine supplementation significantly (P < 0.05) increased muscle total Cr (resting values: CREAT: 138.1 ± 7.9; CON: 117.7 ± 6.5 mmol·kg-1 dm). No difference was seen between treatments in any measured muscle or blood metabolite after the first 45 min of exercise. Despite the performance ride completion time being similar in the two treatments (∼13.5 min, ∼86% V̇O2peak), IMP at the end of the performance ride was significantly (P < 0.05) lower in CREAT than in CON (CREAT: 1.2 ± 0.6; CON: 2.0 ± 0.7 mmol·kg-1 dm).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is common to many inflammatory cytokines and growth factors, with recent evidence of involvement in skeletal muscle regeneration. The purpose of this study was to determine whether STAT3 signaling activation is regulated differentially, at rest and following intense resistance exercise, in aged human skeletal muscle. Skeletal muscle biopsies were harvested from healthy younger (n = 11, 20.4 ± 0.8 years) and older men (n = 10, 67.4 ± 1.3 years) under resting conditions and 2 h after the completion of resistance exercise. No differences were evident at rest, whereas the phosphorylation of STAT3 was significantly increased in old (23-fold) compared to young (5-fold) subjects after exercise. This correlated with significantly higher induction of the STAT3 target genes including; interleukin-6 (IL-6), JUNB, c-MYC, and suppressor of cytokine signaling (SOCS) 3 mRNA in older subjects following exercise. Despite increased SOCS3 mRNA, cellular protein abundance was suppressed. SOCS3 protein is an important negative regulator of STAT3 activation and cytokine signaling. Thus, in aged human muscle, elevated responsiveness of the STAT3 signaling pathway and suppressed SOCS3 protein are evident following resistance exercise. These data suggest that enhanced STAT3 signaling responsiveness to proinflammatory factors may impact on mechanisms of muscle repair and regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the effect of combined α- and β-adrenergic blockade on glucose kinetics during intense exercise. Six endurance-trained men exercised for 20 minutes at approximately 78% of their peak oxygen consumption (VO 2) following ingestion of a placebo (CON) or combined α- (prazosin hydrochloride) and β- (timolol maleate) adrenoceptor antagonists (BLK). Plasma glucose increased during exercise in CON (0 minutes: 5.5 ± 0.1; 20 minutes: 6.5 ± 0.3 mmol · L−1, P < .05). In BLK, the exercise-induced increase in plasma glucose was abolished (0 minutes: 5.7 ± 0.3; 20 minutes: 5.7 ± 0.1 mmol · L−1). Glucose kinetics were measured using a primed, continuous infusion of [6,6-2H] glucose. Glucose production was not different between trials; on average these values were 25.3 ± 3.9 and 30.9 ± 4.4 μmol · kg−1 · min−1 in CON and BLK, respectively. Glucose uptake during exercise was greater (P < .05) in BLK (30.6 ± 4.6 μmol · kg−1 · min−1) compared with CON (18.4 ± 2.5 μmol · kg−1 · min−1). In BLK, plasma insulin and catecholamines were higher (P < .05), while plasma glucagon was unchanged from CON. Free fatty acids (FFA) and glycerol were lower (P < .05) in BLK. These findings demonstrate that adrenergic blockade during intense exercise results in a blunted plasma glucose response that is due to enhanced glucose uptake, with no significant change in glucose production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterization of expression of, and consequently also the acute exercise effects on, Na+,K+-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na+,K+-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±S.E.M.) immediately increased 3 and ß2 mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst 1 and 2 mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for ß1 and ß3 mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for 1, 2, 3, ß1, ß2 and ß3 isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the 1–3 and ß1–ß3 isoforms. Thus, human skeletal muscle expresses each of the Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na+,K+-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na+,K+-ATPase up-regulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated whether depressed muscle Na+-K+-ATPase activity with exercise reflected a loss of Na+-K+-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na+-K+-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at ~40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na+-K+-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na+-K+-ATPase content via [3H]ouabain binding sites, and Na+-K+-ATPase α1-, α2-, α3-, ß1-, ß2- and ß3-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [3H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated α1-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Δ3-O-MFPaserest-fatigue) (r = –0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) {alpha}1-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Δ3-O-MFPaserest-fatigue (r = –0.56, P = 0.08). Exercise elevated α2-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Δ3-O-MFPaserest-fatigue (r = –0.60, P = 0.05). The average postexercise α2-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Δ3-O-MFPaserest-fatigue (r = –0.68, P < 0.05). Nonsignificant correlations were found between %Δ3-O-MFPaserest-fatigue and other isoforms. Thus acute exercise transiently decreased Na+-K+-ATPase activity, which was correlated with increased Na+-K+-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na+-K+-ATPase activity with exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low-volume ‘sprint’ interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 ± 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s ‘all out’ Wingate Test (mean power output ∼500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40–60 min of continuous cycling at a workload that elicited ∼65% (mean power output ∼150 W) per day, 5 days per week. Weekly time commitment (∼1.5 versus ∼4.5 h) and total training volume (∼225 versus ∼2250 kJ week−1) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1α protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-γ coactivator-1α. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time-efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-intensity interval training (HIT) is a potent time-efficient strategy to induce numerous metabolic adaptations usually associated with traditional endurance training. As little as six sessions of HIT over 2 wk or a total of only approximately 15 min of very intense exercise (~600 kJ), can increase skeletal muscle oxidative capacity and endurance performance and alter metabolic control during aerobic-based exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compared the effects of concurrent exercise, incorporating either high-intensity interval training (HIT) or moderate-intensity continuous training (MICT), on mechanistic target of rapamycin complex 1 (mTORC1) signaling and microRNA expression in skeletal muscle, relative to resistance exercise (RE) alone. Eight males (mean ± SD: age, 27 ± 4 yr; V̇o2 peak , 45.7 ± 9 ml·kg(-1)·min(-1)) performed three experimental trials in a randomized order: 1) RE (8 × 5 leg press repetitions at 80% 1-repetition maximum) performed alone and RE preceded by either 2) HIT cycling [10 × 2 min at 120% lactate threshold (LT); HIT + RE] or 3) work-matched MICT cycling (30 min at 80% LT; MICT + RE). Vastus lateralis muscle biopsies were obtained immediately before RE, either without (REST) or with (POST) preceding endurance exercise and +1 h (RE + 1 h) and +3 h (RE + 3 h) after RE. Prior HIT and MICT similarly reduced muscle glycogen content and increased ACC(Ser79) and p70S6K(Thr389) phosphorylation before subsequent RE (i.e., at POST). Compared with MICT, HIT induced greater mTOR(Ser2448) and rps6(Ser235/236) phosphorylation at POST. RE-induced increases in p70S6K and rps6 phosphorylation were not influenced by prior HIT or MICT; however, mTOR phosphorylation was reduced at RE + 1 h for MICT + RE vs. both HIT + RE and RE. Expression of miR-133a, miR-378, and miR-486 was reduced at RE + 1 h for HIT + RE vs. both MICT + RE and RE. Postexercise mTORC1 signaling following RE is therefore not compromised by prior HIT or MICT, and concurrent exercise incorporating HIT, but not MICT, reduces postexercise expression of miRNAs implicated in skeletal muscle adaptation to RE.