2 resultados para Ihc

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

n reptiles, accumulating evidence suggests that nitric oxide (NO) induces a potent relaxation in the systemic vasculature. However, very few studies have examined the source from which NO is derived. Therefore, the present study used both anatomical and physiological approaches to establish whether NO-mediated vasodilation is via an endothelial or neural NO pathway in the large arteries of the estuarine crocodile Crocodylus porosus. Specific endothelial nitric oxide synthase (NOS) staining was observed in aortic endothelial cells following nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and endothelial NOS immunohistochemistry (IHC), suggesting that an endothelial NO pathway is involved in vascular control. This finding was supported by in vitro organ bath physiology, which demonstrated that the relaxation induced by acetylcholine (10-5 mol l-1) was abolished in the presence of the NOS inhibitor, N-omega-nitro-L-arginine (L-NNA; 10-4 mol l-1), the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10-5 mol l-1), or when the endothelium was removed. Interestingly, evidence for a neural NO pathway was also identified in large arteries of the crocodile. Neural NOS was located in perivascular nerves of the major blood vessels following NADPH-d histochemistry and neural NOS IHC and in isolated aortic rings, L-NNA and ODQ, but not the removal of the endothelium, abolished the relaxation effect of the neural NOS agonist, nicotine (3x10-4 mol l-1). Thus, we conclude that the large arteries of C. porosus are potentially regulated by NO-derived from both endothelial and neural NOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ∼16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ∼38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.