54 resultados para Hydrogen-Ion Concentration

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A drift and pumpback experiment was conducted in a brackish water sandfill. The sandfill was reclaimed from the sea in the eastern part of Singapore and contains sands with low organic and clay/silt contents. The high salinity in the ground water precludes the use of chloride and bromide as tracers in such an environment, and a field experiment was conducted to assess the viability of using fluorescein as a tracer in brackish water aquifers. Nitrate was used as a second tracer to serve as a check. Initial laboratory studies showed that fluorescence was unaffected over the range of electrical conductivity and pH of the ground water. Results from the field experiment show that fluorescein appears to behave conservatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four treatments (roasting, germination, autoclaving and an application of 0.5% EDTA+0.5% sodium hydroxide) were used to reduce the beany flavour of soya beans to produce a soy-based beverage. While germination significantly increased the protein level as compared to the other treatments, the maximum reduction of the beany flavour was achieved by the 0.5% EDTA+0.5% sodium hydroxide application. The soya beans that underwent this treatment were used during the second phase for optimized beverage formulation. During the second phase, a beverage was prepared according to different formulations and analysed for chemical composition and total viable count during a two-month storage period. During storage, the beverage samples exhibited variations in several parameters. The acidity, reducing sugars and total sugars increased, while the ascorbic acid, total soluble solids and pH decreased. Overall, chemical and microbial analyses showed the stability of the product during the storage period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predicting hydrogen sulphide concentration in sewer network through modelling tools will be beneficial for many stakeholders to design appropriate mitigation strategies. However, the hydrogen sulphide modelling in a sewer network is crucially dependent on the hydraulic modelling of the sewer. The establishment of precise hydrogen sulphide and hydraulic modelling however requires detailed and accurate information about the sewer network structure and the model parameters. This paper outlines a novel approach for the development of hydraulic and hydrogen sulphide modelling to predict the concentration of hydrogen sulphide in sewer network. The approach combines the calculation of wastewater generation and implementation of flow routing on the EPA SWMM 5.0 platform to allow hydrodynamic simulations. Dynamic wave routing is used for hydraulic simulations. It is considered to be the best approach to route existing/old sewer flow. The build-up of hydrogen sulphide model includes the empirical models of hydrogen sulphide generation and emission. Trial of the model was conducted to simulate a sewer network in Seoul, South Korea with some hypothetical data. Further analysis on the use of chemical dosing on the sewer pipe was also performed by the model. Promising results have been obtained through the model, however calibration and validation of the model is required. The presented methodology provides a possibility of the free platform SWMM to be used as a prediction tool of hydrogen sulphide generation. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionic liquids (ILs) are solvents with numerous properties, which have been recently used for enzyme catalysis. In this work, five different ILs based on primary, tertiary, and quaternary ammonium cations coupled with mesylate and propionate anions were used as media for hydrolysis by the industrially relevant enzyme Thermomyces lanuginosus lipase (TLL). We correlated the TLL activity with various key IL and IL-water properties, including ion concentration, water activity (aw), kosmotropicity, hydrogen-bond basicity (β), and pH. The ion concentration was associated with aw, and the molar ratio of water/IL 5:1 (aw≈0.6) was found to be the threshold for assured TLL activity. Triethylammonium mesylate was the best IL owing to its kosmotropicity and ideal intrinsic β. The pH of IL-water mixtures is a key parameter related to the conformational change of TLL. We demonstrated the pH effect of the IL-water mixtures can be overcome by buffering, and the buffered system displayed the greatest activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of processing history and morphology is of particular importance for lithium-ion electrolytes for achieving higher ionic conductivities. In this study, single ion conducting poly (4-lithium styrene sulfonic acid) was synthesized by neutralization reaction from polystyrene sulfonic acid, and the effect of morphology and processing method was studied by comparing pelletized, electrospun and gel samples. The PSSLi gels displayed best ionic conductivity, while the pelletized samples showed the worst ionic conductivity. Although electrospinning led to a free standing electrolyte, the lower amount of solvent phase led to lower ionic conductivity when compared to the PSSLi gel. The ionic conductivity at room temperature improved from 6.6 × 10−5 S/cm to 1.4 × 10−3 S/cm by optimizing the processing methodology and the lithium ion concentration. The results show that PSSLi based single ion conducting lithium (SICL) gels are a promising candidate for lithium ion battery application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Basic activated alumina with negatively charged surface is considered as a potential adsorbent for a targeted molecule with positive polarity. Adsorption of sodium by basic activated alumina was investigated as a method for desalting dairy waste streams, in which sodium ion concentration averaged 600 mg/L. Sodium equilibrium and kinetic adsorption were investigated using basic activated alumina with synthetic brines. The results of equilibrium adsorption show that uptake of sodium by activated alumina is significantly higher when the pH is greater than 8 and increases as the pH of the brines increases until pH reaches around 10. The results of kinetic adsorption show that 90 hours were needed to reach equilibrium for sodium adsorption. Binding and diffusion processes are suggested to have taken place within the activated alumina.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS2 cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 μg/L for molybdenum, titanium, niobium, and silicon, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of interactions between organic biomolecules and semiconducting surfaces is an important consideration for the design and fabrication of field-effect-transistor (FET) biosensor. This paper demonstrates DNA detection by employing a double-gate field effect transistor (DGFET). In addition, an investigation of sensitivity and signal to noise ratio (SNR) is carried out for different values of analyte concentration, buffer ion concentration, pH, reaction constant, etc. Sensitivity, which is indicated by the change of drain current, increases non-linearly after a specific value (∼1nM) of analyte concentration and decreases non-linearly with buffer ion concentration. However, sensitivity is linearly related to the fluidic gate voltage. The drain current has a significant effect on the positive surface group (-NH2) compared to the negative counterpart (-OH). Furthermore, the sensor has the same response at a particular value of pH (5.76) irrespective of the density of surface group, although it decreases with pH value. The signal to noise ratio is improved with higher analyte concentrations and receptor densities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-resolved extinction spectroscopy is employed to study the reaction kinetics in the shape-conversion reaction involving halide ions (including Cl-, Br- and I-) etching (sculpturing) silver nanoplates. A series of time-resolved extinction spectra are obtained during the in situ etching process and the evolution of surface plasmon resonance (SPR) of the silver nanoparticles is analyzed. Spectral analysis indicates that the conversion of nanoprisms starts simultaneously with the emergence of nanodisks when the halide ions are added. The etching rate of different halide ions is evaluated through the in-plane dipole resonance peak intensity of silver nanoplates vs. the reaction time (dI/dt). The relationship between the etching rate and the halide ion concentration shows that the halide ion etching reaction can be considered as a pseudo-first-order reaction. The effect of different halide ions on the shape-conversion of silver nanoplates is compared in detail. The activation energy of the etching reaction is calculated, which indicates that the etching ability of different halide ions is on the order of Cl - < I- < Br-.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.