2 resultados para Glass ionomer cement

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sulfonated ionomers based on poly(triethylmethyl ammonium 2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) and containing mixtures of Li+ and quaternary ammonium cations are characterised. The first system contains Li+ and the methyltriethyl ammonium cation (N1222) in a 1:9 molar ratio, and the 7Li NMR line widths showed that the Li+ ions are mobile in this system below the glass transition temperature (105°C) and are therefore decoupled from the polymer segmental motion. The conductivity in this system was measured as 10-5 Scm-1 at 130°C. A second PAMPS system containing Li+ and the dimethylbutylmethoxyethyl ammonium cation (N114(2O1)) in a 2:8 molar ratio showed much lower conductivities despite a significantly lower Tg (60°C), possibly due to associations between the Li+ and the ether group on the ammonium cation, or between the latter cations and the sulfonate groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poly(N1222)xLi1-x[AMPS] ionomer system with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (ie. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222+ concentrations. At 50 mol% N1222+ concentration the polymer backbone is more rigid than for higher N1222+ concentrations, but with increasing temperature Li ion transport is more significant than polymer or quaternary ammonium cation motions. Here we suggest an ion hopping mechanism for Li+, arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness.