41 resultados para GLUCAGON-LIKE PEPTIDE-1

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individual differences in taste perception may influence dietary habits, nutritional status, and ultimately nutrition-related chronic disease risk. Individual differences in sweetness intensity perception and the relationship between perceived sweetness intensity, food behaviors, and dietary intake was investigated in 85 adults. Subjects (body mass index [BMI]= 21 ± 3, 21 ± 4 y) completed a food and diet questionnaire, food variety survey, 2 24-h food records, and a perceived sweetness intensity measurement using the general labeled magnitude scale (gLMS). There was interindividual variation in perceived sweetness intensity (0 to 34 gLMS units, mean 10 ± 7). One-way analysis of variance (ANOVA) revealed no difference between perceived sweetness intensity and degree of importance placed on not adding sugar to tea or coffee (P = 0.2) and the degree of importance placed on avoiding sugar-sweetened or fizzy drinks (P = 1.0). Independent t-test analysis revealed no significant association between perceived sweetness intensity and the food variety measure for sugar and confectionary intake (P = 0.6) and selected fruit and vegetable intake (P = 0.1 to 0.9). One-way ANOVA also demonstrated no difference between tertiles of sweetness intensity and BMI (P = 0.1), age (P = 0.3), and food variety score (P = 0.5). No correlation was observed with regards to perceived sweetness intensity and mean total energy (kJ) intake (r = 0.05, P = 0.7), percent energy from total fat, saturated fat, protein, carbohydrate, and grams of fiber (r =–0.1 to 0.1, P = 0.2 to 0.8) and also for intake of the micronutrients: folate, magnesium, calcium, iron, and zinc (r = 0.1 to 0.2, P = 0.1 to 0.4). Only modest correlations were observed between sodium (r = 0.3, P < 0.05), vitamin C (r = 0.3, P < 0.05), and potassium (r = 0.2, P < 0.0) intake and perceived sweetness intensity. Overall, perceived sweetness intensity does not appear to play a role in food behaviors relating to sugar consumption and dietary intake in adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incretin-based therapies have a glucose-dependent mode of action that results in excellent glucose-lowering efficacy with very low risk of hypoglycaemia, and weight neutrality [dipeptidyl peptidase-4 (DPP-4) inhibitors] or weight loss [glucagon-like peptide-1 (GLP-1) receptor agonists], in people with type 2 diabetes mellitus (T2DM). Patient-reported outcomes (PROs) complement physician evaluations of efficacy and tolerability and offer insights into the subjective experience of using modern diabetes treatments. We conducted a systematic search of clinical trials of the GLP-1 receptor agonists liraglutide, exenatide and long-acting exenatide, one of which included the oral DPP-4 inhibitor sitagliptin as a comparator. No other PRO data for DPP-4 inhibitors were identified. This review summarizes PRO data from eight clinical trials, the majority of which used the Diabetes Treatment Satisfaction Questionnaire (DTSQ) and/or Impact of Weight on Quality of Life-Lite (IWQOL-Lite) to evaluate patient experience. People with T2DM were highly satisfied with modern incretin-based therapies compared with traditional therapies. Treatment satisfaction (including perceptions of convenience and flexibility) was high and generally higher with GLP-1 agonists in association with their greater glucose-lowering efficacy and tendency to facilitate weight loss. Weight-related quality of life (QoL) also improved in people using incretin therapies. The glycaemic improvements achieved with GLP-1 receptor agonists, coupled with the low incidence of hypoglycaemia and ability to cause weight loss, seemed to offset potential concern about injections. It is plausible that superior patient-reported benefits found in clinical trials may translate into improved, clinically meaningful, long-term outcomes through increased treatment acceptability. Long-term, prospective data are needed to ascertain whether this is the case in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis In type 2 diabetes, aggregation of islet amyloid polypeptide (IAPP) into amyloid is associated with beta cell loss. As IAPP is co-secreted with insulin, we hypothesised that IAPP secretion is necessary for amyloid formation and that treatments that increase insulin (and IAPP) secretion would thereby increase amyloid formation and toxicity. We also hypothesised that the unique properties of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 to maintain or increase beta cell mass would offset the amyloid-induced toxicity.

Methods Islets from amyloid-forming human IAPP transgenic and control non-transgenic mice were cultured for 48 h in 16.7 mmol/l glucose alone (control) or with exendin-4, potassium chloride (KCl), diazoxide or somatostatin. Human IAPP and insulin release, amyloid deposition, beta cell area/islet area, apoptosis and AKT phosphorylation levels were determined.

Results In control human IAPP transgenic islets, amyloid formation was associated with increased beta cell apoptosis and beta cell loss. Increasing human IAPP release with exendin-4 or KCl increased amyloid deposition. However, while KCl further increased beta cell apoptosis and beta cell loss, exendin-4 did not. Conversely, decreasing human IAPP release with diazoxide or somatostatin limited amyloid formation and its toxic effects. Treatment with exendin-4 was associated with an increase in AKT phosphorylation compared with control and KCl-treated islets.

Conclusions/interpretation IAPP release is necessary for islet amyloid formation and its toxic effects. Thus, use of insulin secretagogues to treat type 2 diabetes may result in increased islet amyloidogenesis and beta cell death. However, the AKT-associated anti-apoptotic effects of GLP-1 receptor agonists such as exendin-4 may limit the toxic effects of increased islet amyloid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes is associated with insulin resistance and reduced insulin secretion, which results in hyperglycaemia. This can then lead to diabetic complications such as retinopathy, neuropathy, nephropathy and cardiovascular disease. Although insulin resistance may be present earlier in the progression of the disease, it is now generally accepted that it is the deterioration in insulin-secretory function that leads to hyperglycaemia. This reduction in insulin secretion in Type 2 diabetes is due to both islet β-cell dysfunction and death. Therefore, interventions that maintain the normal function and protect the pancreatic islet β-cells from death are crucial in the treatment of Type 2 diabetes so that plasma glucose levels may be maintained within the normal range. Recently, a number of compounds have been shown to protect β-cells from failure. This review examines the evidence that the existing therapies for Type 2 diabetes that were developed to lower plasma glucose (metformin) or improve insulin sensitivity (thiazolidinediones) may also have islet-protective function. Newer emerging therapeutic agents that are designed to increase the levels of glucagon-like peptide-1 not only stimulate insulin secretion but also appear to increase islet β-cell mass. Evidence will also be presented that the future of drug therapy designed to prevent β-cell failure should target the formation of advanced glycation end products and alleviate oxidative and endoplasmic reticulum stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased energy consumption, especially increased consumption of sweet energy-dense food, is thought to be one of the main contributors to the escalating rates in overweight individuals and obesity globally. The individual's ability to detect or sense sweetness in the oral cavity is thought to be one of many factors influencing food acceptance, and therefore, taste may play an essential role in modulating food acceptance and/or energy intake. Emerging evidence now suggests that the sweet taste signaling mechanisms identified in the oral cavity also operate in the gastrointestinal system and may influence the development of satiety. Understanding the individual differences in detecting sweetness in both the oral and gastrointestinal system towards both caloric sugar and high intensity sweetener and the functional role of the sweet taste system may be important in understanding the reasons for excess energy intake. This review will summarize evidence of possible associations between the sweet taste mechanisms within the oral cavity, gastrointestinal tract and the brain systems towards both caloric sugar and high intensity sweetener and sweet taste function, which may influence satiation, satiety and, perhaps, predisposition to being overweight and obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major depressive disorder (MDD) is associated with cognitive dysfunction encompassing several domains, including memory, executive function, processing speed and attention. Cognitive deficits persist in a significant proportion of patients even in remission, compromising psychosocial functioning and workforce performance. While monoaminergic antidepressants may improve cognitive performance in MDD, most antidepressants have limited clinical efficacy. The overarching aims of this review were: (1) to synthesize extant literature on putative biological pathways related to cognitive dysfunction in MDD and (2) to review novel neurotherapeutic targets for cognitive enhancement in MDD. We found that reciprocal and overlapping biological pathways may contribute to cognitive dysfunction in MDD, including an hyperactive hypothalamic-pituitary-adrenal axis, an increase in oxidative and nitrosative stress, inflammation (eg, enhanced production of pro-inflammatory cytokines), mitochondrial dysfunction, increased apoptosis as well as a diminished neurotrophic support. Several promising neurotherapeutic targets were identified such as minocycline, statins, anti-inflammatory compounds, N-acetylcysteine, omega-3 poliunsaturated fatty acids, erythropoietin, thiazolidinediones, glucagon-like peptide-1 analogues, S-adenosyl-l-methionine (SAMe), cocoa flavonols, creatine monohydrate and lithium. Erythropoietin and SAMe had pro-cognitive effects in randomized controlled trials (RCT) involving MDD patients. Despite having preclinical and/or preliminary evidences from trials suggesting possible efficacy as novel cognitive enhancing agents for MDD, no RCT to date was performed for most of the other therapeutic targets reviewed herein. In conclusion, multiple biological pathways are involved in cognitive dysfunction in MDD. RCTs testing genuinely novel pro-cognitive compounds for MDD are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This study has investigated the patterns of colocalisation of the conventional K cell marker, glucagon-like insulinotropic peptide (GIP), and the L cell markers, glucagon like peptide-1 (GLP-1) and peptide YY (PYY), in enteroendocrine cells (EEC) of the small intestine and colon of mouse and pig. All combinations of the hormones, 3 in a cell, 2 in a cell and 1 at a time, were encountered. In both species, the three most common EEC types contained (1) both GLP-1 and PYY but not GIP, (2) GLP-1 alone or (3) GIP plus GLP-1 without PYY. Few GIP plus PYY cells and rare cells containing all 3 hormones were encountered. Gradients of cell types occurred along the intestine. For example, in mouse, there were no PYY cells in the duodenum and few in the jejunum, but >50 % of labelled EEC in the distal ileum and colon were PYY immunoreactive. By contrast, over 40 % of EEC in the pig duodenum contained PYY, and most also contained either GLP-1 or GIP. The gradient in pig was less pronounced. It is concluded that the traditional classification of K and L cells requires revision, and that there are major inter-species differences in the patterns of colocalisation of hormones that have been used to characterise K and L cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral antidiabetic drugs that improve glycaemic control without causing weight gain or increasing hypoglycaemic risk in patients with type 2 diabetes mellitus (T2DM). The eight available DPP-4 inhibitors, including alogliptin, anagliptin, gemigliptin, linagliptin, saxagliptin, sitagliptin, teneligliptin, and vildagliptin, are small molecules used orally with identical mechanism of action and similar safety profiles in patients with T2DM. DPP-4 inhibitors may be used as monotherapy or in double or triple combination with other oral glucose-lowering agents such as metformin, thiazolidinediones, or sulfonylureas. Although DPP-4 inhibitors have the same mode of action, they differ by some important pharmacokinetic and pharmacodynamic properties that may be clinically relevant in some patients. The main differences between the eight gliptins include: potency, target selectivity, oral bioavailability, elimination half-life, binding to plasma proteins, metabolic pathways, formation of active metabolite(s), main excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. The off-target inhibition of selective DPP-4 inhibitors is responsible for multiorgan toxicities such as immune dysfunction, impaired healing, and skin reactions. As a drug class, the DPP-4 inhibitors have become accepted in clinical practice due to their excellent tolerability profile, with a low risk of hypoglycaemia, a neutral effect on body weight, and once-daily dosing. It is unknown if DPP-4 inhibitors can prevent disease progression. More clinical studies are needed to validate the optimal regimens of DPP-4 inhibitors for the management of T2DM when their potential toxicities are closely monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alogliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor that is a class of relatively new oral hypoglycaemic drugs used in patients with type 2 diabetes (T2DM), can be used as monotherapy or in combination with other anti-diabetic agents, including metformin, pioglitazone, sulfonylureas and insulin with a considerable therapeutic effect. Alogliptin exhibits favorable pharmacokinetic and pharmacodynamic profiles in humans. Alogliptin is mainly metabolized by cytochrome P450 (CYP2D6) and CYP3A4. Dose reduction is recommended for patients with moderate or worse renal impairment. Side effects of alogliptin include nasopharyngitis, upper-respiratory tract infections and headache. Hypoglycaemia is seen in about 1.5% of the T2DM patients. Rare but severe adverse reactions such as acute pancreatitis, serious hypersensitivity including anaphylaxis, angioedema and severe cutaneous reactions such as Stevens-Johnson syndrome have been reported from post-marketing monitoring. Pharmacokinetic interactions have not been observed between alogliptin and other drugs including glyburide, metformin, pioglitazone, insulin and warfarin. The present review aimed to update the clinical information on pharmacodynamics, pharmacokinetics, adverse effects and drug interactions, and to discuss the future directions of alogliptin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now understood that a combination of molluscan reproductive peptides are commonly cleaved from a large preprohormone and influence different aspects of spawning behavior. One type of reproductive peptide, known in Lymnaea stagnalis as [alpha]-CDCP, and in Aplysia californica as [alpha]-BCP, acts in egg laying via temperature-dependent autoinhibition or autoexcitation of neuronal cells. In our study, the expression of [alpha]-CDCP-like peptide in the blacklip abalone, Haliotis rubra, was identified by Western blots and immunocytochemistry, using an antiserum developed against [alpha]-CDCP. Western blots of total protein isolated from the central nervous system, cerebral and pleuropedal ganglia, as well as gonad and heptopancreas tissues of sexually mature adults, identified a protein of approximately 100 kDa as well as a range of smaller reactive peptides. This finding suggests that a reproductive [alpha]-peptide is probably synthesized from a single larger precursor protein. The larger peptides were also identified in Western blots of several abalone tissues, lmmunocytochemistry using the same antiserum showed the presence of immunoreactive axons in all the tissues studied, indicating synthesis or transport of products. The function of the abalone [alpha]-CDCP-like peptide is yet to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alzheimer’s disease Aβ peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Aβ and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-β (Aβ), the fibrillar prion peptides PrP106–126 and PrP178–193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. Specificity was shown by a lack of change to amyloid precursor-like protein 1, τ-1 and cellular prion protein (PrPc) levels. APP and APLP2 levels were elevated only in cultures exposed to fibrillar peptides as assessed by electron microscopy and not in cultures treated with non-fibrillogenic peptide variants or aggregated lipoprotein. We found that PrP106–126 and the non-toxic but fibril-forming PrP178–193 increased APP levels in cultures derived from both wild-type and PrPc-deficient mice indicating that fibrillar peptides up-regulate APP through a non-cytotoxic mechanism and irrespective of parental protein expression. Fibrillar PrP106–126 and Aβ peptides bound recombinant APP and APLP2 suggesting the accumulation of these proteins was mediated by direct binding to the fibrillated peptide. This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18–146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.