16 resultados para GENE POLYMORPHISMS

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current `fixed-dosage strategy' approach to medicine, means there is much inter-individual variation in drug response. Pharmacogenetics is the study of how inter-individual variations in the DNA sequence of specific genes affect drug responses. This article will highlight current  pharmacogenetic knowledge on important drug metabolizing enzymes, drug transporters and drug targets to understand interindividual variability in drug clearance and responses in clinical practice and potential use in  personalized medicine. Polymorphisms in the cytochrome P450 (CYP) family may have had the most impact on the fate of pharmaceutical drugs. CYP2D6, CYP2C19 and CYP2C9 gene polymorphisms and gene duplications account for the most frequent variations in phase I metabolism of drugs since nearly 80% of drugs in use today are metabolised by these enzymes. Approximately 5% of Europeans and 1% of Asians lack CYP2D6 activity, and these  individuals are known as poor metabolizers. CYP2C9 is another clinically significant drug metabolising enzyme that demonstrates genetic variants. Studies into CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and CYP2C9*3 alleles. Extensive polymorphism also occurs in a majority of Phase II drug metabolizing enzymes. One of the most important polymorphisms is thiopurine S-methyl transferases (TPMT) that catalyzes the S-methylation of thiopurine drugs. With respect to drug transport  polymorphism, the most extensively studied drug transporter is  P-glycoprotein (P-gp/MDR1), but the current data on the clinical impact is limited. Polymorphisms in drug transporters may change drug's distribution, excretion and response. Recent advances in molecular research have revealed many of the genes that encode drug targets demonstrate genetic polymorphism. These variations, in many cases, have altered the targets sensitivity to the specific drug molecule and thus have a profound effect on drug efficacy and toxicity. For example, the β2-adrenoreceptor, which is encoded by the ADRB2 gene, illustrates a clinically significant genetic variation in drug targets. The variable number tandem repeat polymorphisms in serotonin transporter (SERT/SLC6A4) gene are associated with response to antidepressants. The distribution of the common variant alleles of genes that encode drug metabolizing enzymes, drug transporters and drug targets has been found to vary among different populations. The promise of pharmacogenetics lies in its potential to identify the right drug at the right dose for the right individual. Drugs with a narrow therapeutic index are thought to benefit more from pharmacogenetic studies. For example, warfarin serves as a good practical example of how pharmacogenetics can be utilized prior to commencement of therapy in order to achieve maximum efficacy and minimum toxicity. As such, pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and licensed drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The metabolic syndrome (MetS) is a complex of multiple risk factors that contribute to the onset of cardiovascular disorder, including lowered levels of high-density lipoprotein (HDL) and abdominal obesity. Smoking, mood disorders, and oxidative stress are associated with the MetS. Paraoxonase (PON)1 is an antioxidant bound to HDL, that is under genetic control by functional polymorphisms in the PON1 Q192R coding sequence. Aims and methods This study aimed to delineate the associations of the MetS with plasma PON1 activity, PON1 Q192R genotypes, smoking, and mood disorders (major depression and bipolar disorder), while adjusting for HDL cholesterol, body mass index, age, gender, and sociodemographic data. We measured plasma PON1 activity and serum HDL cholesterol and determined PON1 Q192R genotypes through functional analysis in 335 subjects, consisting of 97 with and 238 without MetS. The severity of nicotine dependence was measured using the Fagerström Nicotine Dependence Scale. Results PON1 Q192R functional genotypes and PON1 Q192R genotypes by smoking interactions were associated with the MetS. The QQ and QR genotypes were protective against MetS while smoking increased metabolic risk in QQ carriers only. There were no significant associations between PON1 Q192R genotypes and smoking by genotype interactions and obesity or overweight, while body mass index significantly increased MetS risk. Smoking and especially severe nicotine dependence are significantly associated with the MetS although these effects were no longer significant after considering the effects of the smoking by PON1 Q192R genotype interaction. The MetS was not associated with mood disorders, major depression or bipolar disorder. Discussion PON1 Q192R genotypes and genotypes by smoking interactions are risk factors for the MetS that together with lowered HDL and increased body mass and age contribute to the MetS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dopamine D2 receptors (DRD2) in the central nervous system are involved in the regulation of feeding. It remains to be elucidated if mutations in the DRD2 gene contribute to the development of obesity. The aim of the present study was to investigate whether the Taq IA and Ser311Cys polymorphisms in the DRD2 gene are associated with obesity in Nauruan and Australian subjects. Subjects were selected based on extremes of the body mass index (BMI) distribution. Two groups of Australian women were selected. The leanest group had a mean BMI of 22.5 kg/m2 (range: 20.3-24.3) and the heaviest group had a mean of 36.1 kg/m2 (32.5-44.1). Four groups of Nauruan subjects were selected. Leanest men had a mean BMI of 33.0 kg/m2 (28.4-36.9), heaviest men had a mean of 52.8 kg/m2 (46.5-69.2), leanest women had a mean of 34.8 kg/m2 (28.2-41.8) and heaviest women had a mean of 55.1 kg/m2 (49.3-73.8). Subjects were genotyped for the Taq IA and Ser311Cys polymorphisms using polymerase chain reaction (PCR) restriction fragment length polymorphism analysis and allelic discrimination TaqmanTM PCR respectively. Leanest and heaviest groups were examined for differences in genotype frequency. Taq IA and Ser311Cys genotype frequencies did not differ significantly between leanest and heaviest Nauruan groups, or between leanest and heaviest Australians. Haplotype frequencies of these polymorphisms did not differ between leanest and heaviest groups. The Taq IA and Ser311Cys polymorphisms in the DRD2 gene are unlikely to be common causes of obesity in these populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytochrome P450 (CYP2B6) is an important enzyme that metabolizes more than eight compounds and about 3.0% of therapeutic drugs. The genetic polymorphisms of CYP2B6 have earlier been studied in Caucasian, Japanese and Korean, but the data are lacking for Han Chinese. The aim of this study was to investigate the frequencies of allelic variants of CYP2B6 in healthy Han Chinese and compare with those in other ethnic groups reported in the literature. Polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) method was used to test the five common non-synonymous single nucleotide polymorphisms (SNPs) of CYP2B6 gene, namely, 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T in unrelated healthy Han Chinese (n = 193). The study demonstrated that the frequencies of 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T SNPs in Han Chinese were 0.03, 0.21, 0, 0.28 and 0.003, respectively. The frequencies of all five SNPs tested in female were higher than those in male, but the statistical difference was insignificant (P > 0.05). Compared to the data reported in the literature, the frequencies of common CYP2B6 allelic variants in Chinese are similar to those of other Asian populations including Japanese and Korean, but markedly different from those in Caucasians. These results indicate the presence of marked ethnic difference in CYP2B6 SNP frequencies between Chinese and Caucasian. Further studies are required to explore the impact of these SNPs of CYP2B6 gene on the clinical response (efficacy and toxicity) to drugs that are substrates for CYP2B6 in patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The glutamate system including N-methyl-d-aspartate (NMDA) affects synaptic formation, plasticity and maintenance. Recent studies have shown a variable (GT)n polymorphism in the promoter region of the NMDA subunit gene (GRIN2A) and a length-dependent inhibition of transcriptional activity by the (GT)n repeat. In the present study, we examined whether the GRIN2A polymorphism is associated with regional brain volume especially in medial temporal lobe structures, in which the NMDA-dependent synaptic processes have been most extensively studied. Gray matter regions of interest (ROIs) for the bilateral amygdala and hippocampus were outlined manually on the magnetic resonance images of 144 healthy individuals. In addition, voxel-based morphometry (VBM) was conducted to explore the association of genotype with regional gray matter volume from everywhere in the brain in the same sample. The manually measured hippocampal and amygdala volumes were significantly larger in subjects with short allele carriers (n = 89) than in those with homozygous long alleles (n = 55) when individual differences in intracranial volume were accounted for. The VBM showed no significant association between the genotype and regional gray matter volume in any brain region. These findings suggest that the functional GRIN2A (GT)n polymorphism could weakly but significantly impact on human medial temporal lobe volume in a length-dependent manner, providing in vivo evidence of the role of the NMDA receptor in human brain development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal vein occlusion (RVO) is associated with hyperhomocysteinaemia and the antiphospholipid syndrome—disorders known to contribute to both arterial and venous thrombosis. In both of these conditions and RVO, platelet activation occurs. Aspirin, not warfarin, is the most effective antithrombotic agent in RVO and, taken together, these observations suggest an important role for platelets in this common ocular thrombotic condition. Platelet glycoprotein Ia/IIa (GpIa/IIa) is an adhesion molecule mediating platelet–collagen interactions and is key to the initiation of thrombosis. Recently, the cellular density of this molecule was shown to be determined by two silent, linked polymorphisms (C807T/G873A) within the GpIa/IIa gene. There is evidence that some of the resulting genotypes are associated with thrombo-embolic disease. This study therefore aimed to establish the prevalence of the GpIa/IIa polymorphisms and the three commonest hereditary thrombophilic disorders (prothrombin gene G20210A (PT) mutation, Factor V Leiden (FVL), and the thermolabile methylene tetrahydrofolate reductase C677T (MTHFR) mutation) in patients with RVO and normal controls. The GpIa/IIa polymorphisms and thrombophilic abnormalities were all identified using the polymerase chain reaction.

Our results show that the frequency of the GpIa/IIa polymorphisms was similar in our normal control population to previously published series. Patients with RVO, however, had only a 10% (4/40) frequency of the lowest risk subtype (CC/GG) compared to 37.5% (15/40) in the control group—P 0.0039. The incidence of the PT, FVL, and MTHFR thrombophilic mutations was not different between the two groups, but interestingly none of the 7/40 RVO cases with a PT, FVL, or MTHFR mutation had the low-risk GpIa/IIa genotype while all but one of the controls did—P<0.05. Thus, 17.5% of RVO patients harboured more than one prothrombotic abnormality. The principal difference between the RVO and control group was the very high incidence of the intermediate-risk GpIa/IIa subtype (CT/GA)—82.5 vs 50%, P<0.05.

These results suggest a major role for GpIa/IIa polymorphisms in the pathogenesis of RVO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The mesolimbic structures of the brain are important in the anticipation and perception of reward. Moreover, many drugs of addiction elicit their response in these structures. The M5 muscarinic receptor (M5R) is expressed in dopamine-containing neurones of the substantia nigra pars compacta and ventral tegmental area, and regulates the release of mesolimbic dopamine. Mice lacking M5R show a substantial reduction in both reward and withdrawal responses to morphine and cocaine. The CHRM5, the gene that codes for the M5R, is a strong biological candidate for a role in human addiction. We screened the coding and core promoter sequences of CHRM5 using denaturing high performance liquid chromatography to identify common polymorphisms. Additional polymorphisms within the coding and core promoter regions that were identified through dbSNP were validated in the test population. We investigated whether these polymorphisms influence substance dependence and dose in a cohort of 1947 young Australians.

Results: Analysis was performed on 815 participants of European ancestry who were interviewed at wave 8 of the cohort study and provided DNA. We observed a 26.8% increase in cigarette consumption in carriers of the rs7162140 T-allele, equating to 20.1 cigarettes per week (p=0.01). Carriers of the rs7162140 T-allele were also found to have nearly a 3-fold increased risk of developing cannabis dependence (OR=2.9 (95%CI 1.1-7.4); p=0.03).

Conclusion: Our data suggest that variation within the CHRM5 locus may play an important role in tobacco and cannabis but not alcohol addiction in European ancestry populations. This is the first study to show an association between CHRM5 and substance use in humans. These data support the further investigation of this gene as a risk factor in substance use and dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-carbohydrate low-fat (HC/LF) diet and lipoprotein lipase gene (LPL) Ser447Stop and Hind III polymorphisms have separately been found to be associated with triacylglycerol (TG) and high density lipoprotein cholesterol (HDL-C). This study sought to test the effects of LPL polymorphisms and an HC/LF diet on the serum lipid profile of Chinese with a lower incidence of coronary artery disease (CAD) consuming a diet with less fat and more carbohydrates. Fifty-six healthy subjects (22.89 ± 1.80 years) were given a control diet of 30.1% fat and 54.1% carbohydrates for 7 days, followed by an HC/LF diet of 13.8% fat and 70.1% carbohydrate for 6 days; there were no changes in the fatty acid composition or restrictions on total energy. Serum lipid profiles at baseline, before and after the HC/LF diet, and LPL polymorphisms were analyzed. After 6 days of the HC/LF diet, TG and the homeostasis model assessment of insulin resistance (HOMAIR) index were found to increase only in females with S447S. No decrease in HDL-C was noted. In subjects with Hind III polymorphism, increased TG was found in all females but not in males. Increased HDL-C, together with apolipoprotein (apo) AI, was found in male H- carriers but not in males with H+/H+ and females. In conclusion, LPL Ser447Stop and Hind III polymorphisms modified the effects of an HC/LF diet on the serum lipid profiles of a young Chinese population in different ways. Effective strategies for dietary interventions targeted at younger populations should take into account the interplay between genetic polymorphisms, diet, and gender.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Recent studies have suggested that oxytocin affects social cognition and behavior mediated by the oxytocin receptor (OXTR) in amygdala in humans as well as in experimental animals. Genetic studies have revealed a link between the OXTR gene and the susceptibility to autism spectrum disorders (ASD), especially in the social dysfunctional feature of ASD.

Methods: We examined the relationship between amygdala volume measured with manual tracing methodology and seven single nucleotide polymorphisms and one haplotype-block in OXTR, which were previously reported to be associated with ASD, in 208 socially intact Japanese adults with no neuropsychiatric history or current diagnosis.

Results: The rs2254298A allele of OXTR was significantly associated with larger bilateral amygdala volume. The rs2254298A allele effect on amygdala volume varied in proportion to the dose of this allele. The larger the number of rs2254298A alleles an individual had, the larger their amygdala volume. Such an association was not observed with hippocampal volume or with global brain volumes, including whole gray, white matter, and cerebrospinal-fluid space. Furthermore, two three–single nucleotide polymorphism haplotypes, including rs2254298G allele, showed significant associations with the smaller bilateral amygdala volume.

Conclusions: The present results suggest that OXTR might be associated with the susceptibility to ASD, especially in its aspects of social interaction and communication mediated by a modulation of amygdala development, one of the most distributed brain regions with high density of OXTR. Furthermore, amygdala volume measured with magnetic resonance imaging could be a useful intermediate phenotype to uncover the complex link between OXTR and social dysfunction in ASD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current single-locus-based analyses and candidate disease gene prediction methodologies used in genome-wide association studies (GWAS) do not capitalize on the wealth of the underlying genetic data, nor functional data available from molecular biology. Here, we analyzed GWAS data from the Wellcome Trust Case Control Consortium (WTCCC) on coronary artery disease (CAD). Gentrepid uses a multiple-locus-based approach, drawing on protein pathway- or domain-based data to make predictions. Known disease genes may be used as additional information (seeded method) or predictions can be based entirely on GWAS single nucleotide polymorphisms (SNPs) (ab initio method). We looked in detail at specific predictions made by Gentrepid for CAD and compared these with known genetic data and the scientific literature. Gentrepid was able to extract known disease genes from the candidate search space and predict plausible novel disease genes from both known and novel WTCCC-implicated loci. The disease gene candidates are consistent with known biological information. The results demonstrate that this computational approach is feasible and a valuable discovery tool for geneticists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The closely related pathogenic Neisseria species N. meningitidis and N. gonorrhoeae are able to respire in the absence of oxygen, using nitrite as an alternative electron acceptor. aniA (copper-containing nitrite reductase) is tightly regulated by four transcriptional regulators: FNR (fumarate and nitrate reductase), NarP, FUR (Ferric uptake regulator) and NsrR. The four regulators control expression of aniA in N. meningitidis by binding to specific and distinct regions of the promoter. We show in the present study that FUR and NarP are both required for the induction of expression of aniA in N. meningitidis, and that they bind adjacent to one another in a non-co-operative manner. Activation via FUR/NarP is dependent on their topological arrangement relative to the RNA polymerase-binding site. Analysis of the sequence of the aniA promoters from multiple N. meningitidis and N. gonorrhoeae strains indicates that there are species-specific single nucleotide polymorphisms, in regions predicted to be important for regulator binding. These sequence differences alter both the in vitro DNA binding and the promoter activation in intact cells by key activators FNR (oxygen sensor) and NarP (which is activated by nitrite in N. meningitidis). The weak relative binding of FNR to the N. gonorrhoeae aniA promoter (compared to N. meningitidis) is compensated for by a higher affinity of the gonococcal aniA promoter for NarP. Despite containing nearly identical genes for catalysing and regulating denitrification, variations in the promoter for the aniA gene appear to have been selected to enable the two pathogens to tune differentially their responses to environmental variables during the aerobic–anaerobic switch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A possible association between apolipoprotein E polymorphisms and age-related macular degeneration has been investigated numerous times, with conflicting results. A previous analysis pooling results from four studies (Schmidt et al., Ophthalmic Genet 2002;23:209-23) suggested an association, but those investigators did not document allele frequencies, the magnitude of the association, or the possible genetic mode of action. Thus, the authors searched MEDLINE from 1966 to December 2005 for any English-language studies reporting genetic associations. Data and study quality were assessed in duplicate. Pooling was performed while checking for heterogeneity and publication bias. Frequencies of the E2 and E4 alleles in Caucasians were approximately 8% and 15%, respectively. Allele- and genotype-based tests of association indicated a risk effect of up to 20% for E2 and a protective effect of up to 40% for E4. E2 appeared to act in a recessive mode and E4 in a dominant mode. There appears to be a differential effect of the E2 and E4 alleles on the risk of age-related macular degeneration, although the possibility of survivor bias needs to be ruled out more definitively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: There is evolving evidence that vitamin D insufficiency may contribute to food allergy, but findings vary between populations. Lower vitamin D-binding protein (DBP) levels increase the biological availability of serum vitamin D. Genetic polymorphisms explain almost 80% of the variation in binding protein levels. OBJECTIVE: We sought to investigate whether polymorphisms that lower the DBP could compensate for adverse effects of low serum vitamin D on food allergy risk. METHODS: From a population-based cohort study (n = 5276) we investigated the association between serum 25-hydroxyvitamin D3 (25[OH]D3) levels and food allergy at age 1 year (338 challenge-proven food-allergic and 269 control participants) and age 2 years (55 participants with persistent and 50 participants with resolved food allergy). 25(OH)D3 levels were measured using liquid chromatography-tandem mass spectrometry and adjusted for season of blood draw. Analyses were stratified by genotype at rs7041 as a proxy marker of DBP levels (low, the GT/TT genotype; high, the GG genotype). RESULTS: Low serum 25(OH)D3 level (≤50 nM/L) at age 1 years was associated with food allergy, particularly among infants with the GG genotype (odds ratio [OR], 6.0; 95% CI, 0.9-38.9) but not in those with GT/TT genotypes (OR, 0.7; 95% CI, 0.2-2.0; P interaction = .014). Maternal antenatal vitamin D supplementation was associated with less food allergy, particularly in infants with the GT/TT genotype (OR, 0.10; 95% CI, 0.03-0.41). Persistent vitamin D insufficiency increased the likelihood of persistent food allergy (OR, 12.6; 95% CI, 1.5-106.6), particularly in those with the GG genotype. CONCLUSIONS: Polymorphisms associated with lower DBP level attenuated the association between low serum 25(OH)D3 level and food allergy, consistent with greater vitamin D bioavailability in those with a lower DBP level. This increases the biological plausibility of a role for vitamin D in the development of food allergy.