13 resultados para Functional Prediction

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Expressed Sequence Tags (ESTs) are short DNA sequences generated by sequencing the transcribed cDNAs coming from a gene expression. They can provide significant functional, structural and evolutionary information and thus are a primary resource for gene discovery. EST annotation basically refers to the analysis of unknown ESTs that can be performed by database similarity search for possible identities and database search for functional prediction of translation products. Such kind of annotation typically consists of a series of repetitive tasks which should be automated, and be customizable and amenable to using distributed computing resources. Furthermore, processing of EST data should be done efficiently using a high performance computing platform. In this paper, we describe an EST annotator, EST-PACHPC, which has been developed for harnessing HPC resources potentially from Grid and Cloud systems for high throughput EST annotations. The performance analysis of EST-PACHPC has shown that it provides substantial performance gain in EST annotation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current similarity-based approaches of predicting protein functions from protein-protein interaction (PPI) data usually make use of available information in the PPI network to predict functions of un-annotated proteins, and the prediction is a one-off procedure. However the interactions between proteins are more likely to be mutual rather than static and mono-directed. In other words, the un-annotated proteins, once their functions are predicted, will in turn affect the similarities between proteins. In this paper, we propose an innovative iteration algorithm that incorporates this dynamic feature of protein interaction into the protein function prediction, aiming to achieve higher prediction accuracies and get more reasonable results. With our algorithm, instead of one-off function predictions, functions are assigned to an unannotated protein iteratively until the functional similarities between proteins achieve a stable state. The experimental results show that our iterative method can provide better prediction results than one-off prediction methods with higher prediction accuracies, and is stable for large protein datasets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Purpose: Early identification of predictive factors relevant to functional outcomes for stroke patients is important to the establishment of an effective continuing care program. The objective of this studywas to identify the predictive factors related to functional outcome at discharge after stroke rehabilitation therapy. Methods: 105 first-time stroke patients admitted to the inpatient rehabilitation department of a university-based medical center were recruited for this prospective study. The functional outcomes of the patients were assessed at admission and at discharge using the Functional Independence Measure (FIM). Severity of stroke was determined using the Canadian Neurological Scale (CNS). Age, gender, side of hemiplegia (SIDE), type of stroke (TYPE), onset to admission interval (OAI), and length of rehabilitation stay (LORS) were also included as predictor variables. Results: The mean (′SD) FIM score at discharge (76.6 ′ 26.4) correlated strongly (r = 0.78, p < 0.001) with the admission FIM score (56.3 ′ 24.1), moderately (r = 0.46, p < 0.001) with the admission CNS score (6.1 ′ 2.2), negatively (r = -0.38, p < 0.001) with age (63.2 ′ 12.3 years), negatively (r = -0.26, p = 0.009) with OAI (24.2 ′ 16.0 days), and negatively (r = -0.29, p = 0.002) with LORS (34.7 ′ 16.8 ays). Stepwise regression analyses indicated that admission FIM score, age, and admission CNS score were the stronge predictors of functional outcome and accounted for 66% of the total variation in discharge FIM total score. The admission FIM score was the best predictor and accounted for 61% of the variation. Conclusions: The findings of this study imply that the admission FIM scores for inpatients receiving stroke rehabilitation can be used to predict functional outcomes at discharge from hospital.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrated for the first time by ab initio density functional calculation and molecular dynamics simulation that C0.5(BN)0.5 armchair single-walled nanotubes (NT) are gapless semiconductors and can be spontaneously formed via the hybrid connection of graphene/BN Nanoribbons (GNR/BNNR) at room temperature. The direct synthesis of armchair C0.5(BN)0.5 via the hybrid connection of GNR/BNNR is predicted to be both thermodynamically and dynamically stable. Such novel armchair C0.5(BN)0.5 NTs possess enhanced conductance as that observed in GNRs. Additionally, the zigzag C0.5(BN)0.5 SWNTs are narrow band gap semiconductors, which may have potential application for light emission. In light of recent experimental progress and the enhanced degree of control in the synthesis of GNRs and BNNR, our results highlight an interesting avenue for synthesizing a novel specific type of C0.5(BN)0.5 nanotube (gapless or narrow direct gap semiconductor), with potentially important applications in BNC-based nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new topological concept called k-partite protein cliques to study protein interaction (PPI) networks. In particular, we examine functional coherence of proteins in k-partite protein cliques. A k-partite protein clique is a k-partite maximal clique comprising two or more nonoverlapping protein subsets between any two of which full interactions are exhibited. In the detection of PPI’s k-partite maximal cliques, we propose to transform PPI networks into induced K-partite graphs with proteins as vertices where edges only exist among the graph’s partites. Then, we present a k-partite maximal clique mining (MaCMik) algorithm to enumerate k-partite maximal cliques from K-partite graphs. Our MaCMik algorithm is applied to a yeast PPI network. We observe that there does exist interesting and unusually high functional coherence in k-partite protein cliques—most proteins in k-partite protein cliques, especially those in the same partites, share the same functions. Therefore, the idea of k-partite protein cliques suggests a novel approach to characterizing PPI networks, and may help function prediction for unknown proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio density functional calculations were performed to study finite-length zigzag (7, 0) @ (16, 0) double-walled carbon nanotubes (DWCNTs) with H-termination at the open ends. We find that such a DWCNT nanodot displays a very large magnetic moment at the zigzag edges and the ground state displays symmetric anti-ferromagnetic coupling. When an external electric field is applied along the direction of tube axis, a gap is opened for one spin channel, whereas another spin channel remains metallic, i.e. half metallicity occurs. Our results suggest an important new avenue for the development of CNT-based spintronic materials with enhanced properties. © 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The past few years have seen a rapid development in novel high-throughput technologies that have created large-scale data on protein-protein interactions (PPI) across human and most model species. This data is commonly represented as networks, with nodes representing proteins and edges representing the PPIs. A fundamental challenge to bioinformatics is how to interpret this wealth of data to elucidate the interaction of patterns and the biological characteristics of the proteins. One significant purpose of this interpretation is to predict unknown protein functions. Although many approaches have been proposed in recent years, the challenge still remains how to reasonably and precisely measure the functional similarities between proteins to improve the prediction effectiveness.

Results We used a Semantic and Layered Protein Function Prediction (SLPFP) framework to more effectively predict unknown protein functions at different functional levels. The framework relies on a new protein similarity measurement and a clustering-based protein function prediction algorithm. The new protein similarity measurement incorporates the topological structure of the PPI network, as well as the protein's semantic information in terms of known protein functions at different functional layers. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed framework in predicting unknown protein functions.

Conclusion The proposed framework has a higher prediction accuracy compared with other similar approaches. The prediction results are stable even for a large number of proteins. Furthermore, the framework is able to predict unknown functions at different functional layers within the Munich Information Center for Protein Sequence (MIPS) hierarchical functional scheme. The experimental results demonstrated that the new protein similarity measurement reflects more reasonably and precisely relationships between proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrophobin EAS from the fungus Neurospora crassa forms functional amyloid fibrils called rodlets that facilitate spore formation and dispersal. Self-assembly of EAS into fibrillar rodlets occurs spontaneously at hydrophobic:hydrophilic interfaces and the rodlets further associate laterally to form amphipathic monolayers. We have used site-directed mutagenesis and peptide experiments to identify the region of EAS that drives intermolecular association and formation of the cross-β rodlet structure. Transplanting this region into a nonamyloidogenic hydrophobin enables it to form rodlets. We have also determined the structure and dynamics of an EAS variant with reduced rodlet-forming ability. Taken together, these data allow us to pinpoint the conformational changes that take place when hydrophobins self-assemble at an interface and to propose a model for the amphipathic EAS rodlet structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting protein functions computationally from massive protein–protein interaction (PPI) data generated by high-throughput technology is one of the challenges and fundamental problems in the post-genomic era. Although there have been many approaches developed for computationally predicting protein functions, the mutual correlations among proteins in terms of protein functions have not been thoroughly investigated and incorporated into existing prediction methods, especially in voting based prediction methods. In this paper, we propose an innovative method to predict protein functions from PPI data by aggregating the functional correlations among relevant proteins using the Choquet-Integral in fuzzy theory. This functional aggregation measures the real impact of each relevant protein function on the final prediction results, and reduces the impact of repeated functional information on the prediction. Accordingly, a new protein similarity and a new iterative prediction algorithm are proposed in this paper. The experimental evaluations on real PPI datasets demonstrate the effectiveness of our method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current single-locus-based analyses and candidate disease gene prediction methodologies used in genome-wide association studies (GWAS) do not capitalize on the wealth of the underlying genetic data, nor functional data available from molecular biology. Here, we analyzed GWAS data from the Wellcome Trust Case Control Consortium (WTCCC) on coronary artery disease (CAD). Gentrepid uses a multiple-locus-based approach, drawing on protein pathway- or domain-based data to make predictions. Known disease genes may be used as additional information (seeded method) or predictions can be based entirely on GWAS single nucleotide polymorphisms (SNPs) (ab initio method). We looked in detail at specific predictions made by Gentrepid for CAD and compared these with known genetic data and the scientific literature. Gentrepid was able to extract known disease genes from the candidate search space and predict plausible novel disease genes from both known and novel WTCCC-implicated loci. The disease gene candidates are consistent with known biological information. The results demonstrate that this computational approach is feasible and a valuable discovery tool for geneticists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasminogen (Pg), the precursor of the proteolytic and fibrinolytic enzyme of blood, is converted to the active enzyme plasmin (Pm) by different plasminogen activators (tissue plasminogen activators and urokinase), including the bacterial activators streptokinase and staphylokinase, which activate Pg to Pm and thus are used clinically for thrombolysis. The identification of Pg-activators is therefore an important step in understanding their functional mechanism and derives new therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of carbon fiber, particularly the oxidation/stabilization step, is a complex process. In the present study, a non-linear mathematical model has been developed for the prediction of density of polyacrylonitrile (PAN) and oxidized PAN fiber (OPF), as a key physical property for various applications, such as energy and material optimization, modeling, and design of the stabilization process. The model is based on the available functional groups in PAN and OPF. Expected functional groups, including [Formula presented], [Formula presented], –CH2, [Formula presented], and [Formula presented], were identified and quantified through the full deconvolution analysis of Fourier transform infrared attenuated total reflectance (FT-IR ATR) spectra obtained from fibers. These functional groups form the basis of three stabilization rendering parameters, representing the cyclization, dehydrogenation and oxidation reactions that occur during PAN stabilization, and are used as the independent variables of the non-linear predictive model. The k-fold cross validation approach, with k = 10, has been employed to find the coefficients of the model. This model estimates the density of PAN and OPF independent of operational parameters and can be expanded to all operational parameters. Statistical analysis revealed good agreement between the governing model and experiments. The maximum relative error was less than 1% for the present model.