23 resultados para Expression profiling

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its aetiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a Gene Expression Signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made ‘insulin resistant’ by treatment with tumour necrosis factor-alpha (TNFα) and then reversed with aspirin and troglitazone (‘re-sensitized’). The GES consisted of five genes whose expression levels best discriminated between the insulin resistant and insulin re-sensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3- L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed using aspirin and troglitazone. This screen identified both known and new insulin sensitizing compounds including non-steroidal anti inflammatory agents, β-adrenergic antagonists, beta-lactams and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels, P < 0.001). These findings show that GES technology can be used for both the discovery of insulin sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of prepregnancy obesity, can promote metabolic dysregulation and predispose offspring to type 2 diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variability in human taste perception is associated with both genetic and environmental factors. The influence of taste receptor expression on this variability is unknown, in part, due to the difficulty in obtaining human oral tissue that enables quantitative expression measures of taste genes. In a comparison of six current techniques (Oragene RNeasy Kit, Isohelix swab, Livibrush cytobrush, tongue saliva, cheek saliva collection, and fungiform papillae biopsy), we identify the fungiform papillae biopsy is the optimal sampling technique to analyse human taste gene expression. The fungiform papillae biopsy resulted in the highest RNA integrity, enabling amplification of all the assessed taste receptor genes (TAS1R1, TAS1R2, TAS1R3, SCNN1A and CD36) and taste tissue marker genes (NCAM1, GNAT3 and PLCβ2). Furthermore, quantitative expression was observed in a subset of taste genes assessed from the saliva collection techniques (cheek saliva, tongue saliva and Oragene RNA kit). These saliva collection techniques may be useful as a non-invasive alternative sampling technique to the fungiform papillae biopsy. Identification of the fungiform papillae biopsy as the optimal collection method will facilitate further research into understanding the effect of gene expression on variability in human taste perception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impaired glucose uptake is associated with both cardiac hypertrophy and contractile dysfunction, but whether there are common underlying  mechanisms linking these conditions is yet to be determined. Using a ‘gene dose’ Cre-Lox GLUT4-deficient murine model, we examined the effect of suppressed glucose availability on global myocardial gene expression and glycolysis substrate bypass on the function of isolated perfused hearts. Performance of hearts from 22- to 60-week-old male GLUT4 knockout (KO, > 95% reduction in GLUT4), GLUT4 knockdown (KD, 85% reduction in cardiac GLUT4) and C57Bl/6 wild-type (WT) controls was measured ex vivo in Langendorff mode perfusion. DNA microarray was used to profile mRNA expression differences between GLUT4-KO and GLUT4-KD hearts. At 22 weeks, GLUT4-KO hearts exhibited cardiac hypertrophy and impaired contractile function ex vivo, characterized by a 40% decrease in developed pressure. At 60 weeks, dysfunction was accentuated in GLUT4-KO hearts and evident in GLUT4-KD hearts. Exogenous pyruvate (5 mM) restored systolic pressure to a level equivalent to WT (GLUT4-KO, 176.8 ± 13.2 mmHg vs. WT, 146.4 ± 9.56 mmHg) in 22-week-old GLUT4-KO hearts but not in 60-week-old GLUT4-KO hearts. In GLUT4-KO, DNA microarray analysis detected downregulation of a number of genes centrally involved in mitochondrial oxidation and upregulation of other genes indicative of a shift to cytosolic β-oxidation of long chain fatty acids. A direct link between cardiomyocyte GLUT4 deficiency, hypertrophy and contractile dysfunction is demonstrated. These data provide mechanistic insight into the myocardial metabolic adaptations associated with short and long-term insulin resistance and indicate a window of opportunity for substrate intervention and functional ‘rescue’.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammary gland involution requires co-ordination of milk production, immune responses, apoptosis and remodeling. Initiation and progression of each of these components involves integral control by the mammary gland. Although cell-based culture models and genetically manipulated animals have shed light on these processes, the factors controlling each step in the involution cascade are still poorly understood. The fur seal displays a unique lactation phenotype. During the lactation cycle the mammary gland downregulates milk production and initiates an immune response but fails to initiate the apoptotic phase of involution, allowing the female fur seal to undertake long foraging trips of up to 28 days between suckling bouts. Upon return to shore the female continues feeding her pup following resumption of lactation and milk production. Expression profiling of genes involved in this lactation cycle provides valuable tools for investigation of the factors responsible for the initiation of apoptosis at involution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chicken anemia virus (CAV) is an economically important virus affecting the chicken meat and egg industry. CAV is characterized by anemia, lymphoid depletion, and immunosuppression. Microarrays were used to investigate the response of MDCC-MSB1 cells (MSB1) to infection with CAV at 24 and 48 h post-infection (hpi). The major genes responding to CAV infection include genes involved in inflammation, apoptosis, and antiviral activity. Several cytokines were differentially regulated at either 24 or 48 hpi, including interleukin 2 (IL-2), interleukin receptors IL-1R, IL-22R, IL-18R, and IL-7R, and interferon-α (IFN-α). While there were many genes differentially regulated in this experiment, only two genes were common to both time points, suggesting a dramatic change in gene expression over the two time points studied. The present study is the first microarray experiment to investigate CAV, and we identified a number of key pathways involved in viral infection. Overall, there were more genes upregulated at 24 hpi than at 48 hpi, including genes involved in cytokine signaling, apoptosis, and antiviral activity. The two time points were vastly different in their gene expression patterns, in that at 24 hpi there were many genes involved in the response to infection, whereas at 48 hpi there were many genes associated with apoptosis and immunosuppression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and AimsA major impediment to establishing new treatments for non-alcoholic steatohepatitis is the lack of suitable animal models that accurately mimic the biochemical and metabolic characteristics of the disease. The aim of this study was to explore a unique polygenic animal model of metabolic disease as a model of non-alcoholic steatohepatitis by determining the effects of 2% dietary cholesterol supplementation on metabolic and liver endpoints in Psammomys obesus (Israeli sand rat).MethodsP. obesus were provided ad libitum access to either a standard rodent diet (20% kcal/fat) or a standard rodent diet supplemented with 2% cholesterol (w/w) for 4 weeks. Histological sections of liver from animals on both diets were examined for key features of non-alcoholic steatohepatitis. The expression levels of key genes involved in hepatic lipid metabolism were measured by real-time PCR.ResultsP. obesus fed a cholesterol-supplemented diet exhibited profound hepatomegaly and steatosis, and higher plasma transaminase levels. Histological analysis identified extensive steatosis, inflammation, hepatocyte injury and fibrosis. Hepatic gene expression profiling revealed decreased expression of genes involved in delivery and uptake of lipids, and fatty acid and triglyceride synthesis, and increased expression of genes involved in very low density lipoprotein cholesterol synthesis, triglyceride and cholesterol export.ConclusionsP. obesus rapidly develop non-alcoholic steatohepatitis when fed a cholesterol-supplemented diet that appears to be histologically and mechanistically similar to patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: 

Distinct molecular subgroups of medulloblastoma (MB), including hedgehog (Hh) pathway-activated disease, have been reported. We identified and clinically validated a five-gene Hh signature assay that can be used to preselect patients with Hh pathway-activated MB.

Experimental Design:
Genes characteristic of the Hh MB subgroup were identified through published bioinformatic analyses. Thirty-two genes shown to be differentially expressed in fresh frozen and formalin-fixed paraffin-embedded tumor samples and reproducibly analyzed by RT-PCR were measured in matched samples. These data formed the basis for building a multi-gene logistic regression model derived through elastic net methods from which the five-gene Hh signature emerged after multiple iterations. Based on signature gene expression levels, the model computed a propensity score to determine Hh activation using a threshold set a priori. The association between Hh activation status and tumor response to the Hh pathway inhibitor sonidegib (LDE225) was analyzed.

Results:
Five differentially expressed genes in MB (GLI1, SPHK1, SHROOM2, PDLIM3, and OTX2) were found to associate with Hh pathway activation status. In an independent validation study, Hh activation status of 25 MB samples showed 100% concordance between the five-gene signature and Affymetrix profiling. Further, in MB samples from 50 patients treated with sonidegib, all six patients who responded were found to have Hh-activated tumors. Three patients with Hh-activated tumors had stable or progressive disease. No patients with Hh-nonactivated tumors responded.

Conclusions:
This five-gene Hh signature can robustly identify Hh-activated MB and may be used to preselect patients who might benefit from sonidegib treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end-vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.