3 resultados para Enantioselectivity

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While developing bis-camphorsulfonyl urea as a hydrogen-bonding catalysts, we discovered that the native conformation of the catalyst is unsuitable for inducing enantioselectivity. By complexing the catalyst with weakly Lewis acidic sodium cations, we were able to change the conformation of the catalyst and attain a significant improvement in the selectivity. We provide structural information from X-ray crystallography to show that the uncomplexed catalyst is indeed in an unfavorable conformation. Infrared and Raman spectroscopic studies show that sodium binds the catalyst through the carbonyl and sulfonyl groups. Simulated IR and Raman spectra match well with the experimentally recorded spectra, thereby corroborating the proposed conformational change. This result shows that weak Lewis acids can be used to tune the conformation of hydrogen-bonding catalysts and enhance the selectivity of reaction catalyzed by these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1R,2S,5R)-Menthyldiphenylgermane and its enantiomer have been prepared in a few steps from germanium tetrachloride. The initial step in this sequence, namely the reaction between germanium tetrachloride and menthylmagnesium chloride, produces menthylgermanium trichloride, which is the exclusive product of this Grignard reaction, presumably due to the bulk of the menthyl group. When used at a low temperature (−78 °C) and in conjunction with Lewis acids, such as magnesium salts, these chiral germanes are capable of reducing ester functionalized radicals in high enantioselectivity, but in low-moderate yield. For example, (R)-naproxen ethyl ester was obtained in 15% yield and 99% ee by reaction in toluene of 2-bromonaproxen ethyl ester with (1R,2S,5R)-menthyldiphenylgermane in toluene at −78 °C in the presence of magnesium bromide. At 80 °C, (1R,2S,5R)-menthyldiphenylgermane reacted with primary alkyl radicals with a rate constant of 1.02 × 106 M−1 s−1. Kinetic studies reveal the Arrhenius expression for this reaction to be: log(k/M−1 s−1) = (11.1 ± 0.4) − (34.6 ± 3.1)/θ where θ=2.3RT kJ mol−1.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reports on the feasibility of the utilization of organotin hydrides as enaantioselective free radical reducing agents. The chiral organotin hydrides prepared contain the bulky chiral (1R,2S,5R)-menthyl substituent and in some cases also contain a stereogenic tin centre. Reaction of (1R,2S,5R)-menthylmagnesium chloride (MenMgC1) with triphenyltin chloride in THF proceeds with epimerization of the C-1 carbon of the menthyl group and results in a mixture of (1R,2S,5R)-menthyltriphenyltin and (1S,2S.5R)-menthyltriphenyltin. Addition of Lewis bases such as triphenylphosphine to the THF solution of triphenyltin chloride prior to the addition of the Grignard reagent suppresses epimerization and enables isolation of pure (1R,2S,5R)-menthyltriphenyltin. (1R,2S,5R)-Menthyltriphenyltin is the precursor for the synthesis of (1R,2S,5R)-menthyldiphenyltin hydride as well as (1R,2S,5R)-menthyl-containing organotin halide derivatives. A crystal structure of (1R,2S,5R)-menthylphenyltin dibromide and (1R,2S,5R)-menthylphenyltin dichloride confirmed the configuration of the menthyl substituent in these compounds. Reaction of MenMgC1 with diphenyltin dichloride in THF proceeds with no epimerization of the C-1 carbon of the menthyl group and bis((1R,2S,5R)-menthyl)diphenyltin is formed. A crystal structure of (1R,2S,5R)-menthyltriphenyltin confirmed the configuration of the menthyl substituent. Bis((1R,2S,5R)-menthyl)diphenyltin is used to form bis((1R,2S,5R)-menthyl)phenyltin hydride as well as other bis(1R,2S,5R)-menthyl derivatives. A series of chiral non-racemic triorganotin halides and triorganotin hydrides containing one or two (1R,2S,5R)-menthyl substituents as well as various potentially intramolecular coordination substituents were synthesized and characterized. The intramolecular substituents include the 8-(dimethylamino)naphthyl, 2-[(1S)-1-dimethylaminoethyl]phenyl, 2-(4,4-dimethyl-2-oxazoline)-5-methylphenyl and the 2-(4-(S)isopropyl-2-oxazoline)-5-methylphenyl substituents. Each compound containing a stereogenic tin centre was synthesized as diastereomeric mixtures. AM1 calculations of these compounds provide good qualitative predictability of the molecular geometries observed in the solid state as well as the diastereomeric ratios observed in solution. X-ray analysis of some of the organotin halides containing intramolecular coordination substituents revealed a tendency towards penta-coordination at the tin centre as a result of N-Sn interactions. The chiral organotin hydrides synthesized were found to be poor enantioselective free radical reducing agents. However, the addition of one molar equivalent of achiral or chiral Lewis acids to the free radical reduction reactions involving these organotin hydrides results in remarkable increases in enantioselectivity. There are numerous examples in which enantioselectivities exceed 80% and three examples of enantioselectivites which are equal and above 90% with one outstanding enantioselective outcome of ≥99%. These results appear to be the highest enantioselectivites for organotin hydride radical reductions reported to date. There is strong evidence to suggest that the chiral menthyl group of the organotin hydride directs the stereochemical outcome in the reduced product. The results also suggest that an increase in the number of menthyl substituents attached to tin or the introduction of intramolecular coordination substituents does not necessarily results in a greater increase in enantioselectivity. Preliminary studies into the synthesis of organotin hydrides containing Lewis acid functionalities are also reported. A zirconium chloride functionality was found to be incompatible with organotin hydride. However, an organotin hydride containing a trialkylboron Lewis acid functionality attached via an alkyl chain was successfully synthesized. Although this reagent was only stable in the preparative THF solution, it was still found to be effective at reducing benzaldehyde to benzyl alcohol.