17 resultados para Cytochrome B

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most important requirements for systematic and phylogenetic studies is the identification of gene regions with the appropriate level of variation for the question of interest. Molecular phylogenetic and systematic studies of freshwater crayfish have made use of DNA sequences mainly from ribosomal genes, especially the 16S rRNA gene region. Thus, little information is available on other potentially useful mitochondrial gene regions for systematic studies in these animals. In this study, we look at nucleotide variation and phylogenetic relations within and between four species of freshwater crayfish of the genus Cherax from the southwest of Western Australia using four fragments amplified from the 16S rRNA, 12S rRNA, Cytochrome Oxidase I (COI), and Cytochrome b (Cyt b) gene regions. Samples of Engaeus strictifrons, Euastacus bispinosus, and Geocharax falcata were also sequenced for comparative purposes. The size of the fragments varied from 358 bp to 600 bp. Across all samples, the four fragments showed significant phylogenetic signal and showed similar proportions of variable sites (28.81–37.33%). Average divergence within species for the mitochondrial gene regions varied from 1.18% to 4.91%, with the 16S rRNA being the least variable and Cyt b the most variable. Average divergence between species ranged 7.63–15.53%, with 16S rRNA being the least variable and COI the most variable. At the generic level, average divergence ranged 17.21–23.82%. Phylogenetic analyses of the 16S rRNA, 12S rRNA, and COI regions generated four clades consistent with the presence of four species previously identified on the basis of allozyme and morphological studies. The relationships among samples were largely congruent across the data set, although some relationships remained unresolved. Not all samples could be amplified using the Cyt b primers, and some of those that were showed quite anomalous relationships, suggesting that one or more Cyt b pseudogenes were being amplified.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phylogenetic relationships among cheilodactylid and latrid fishes were estimated from cytochrome oxidase I and cytochrome b mitochondrial DNA sequences. Two South African cheilodactylids, Cheilodactylus fasciatus and Cheilodactylus pixi, were divergent from the remaining members of their genus and family, and the monophyly of these groups was rejected based on parametric bootstrap analysis. As C. fasciatus is the nominal species for the genus and family, widespread taxonomic reassignment is implicated for the remaining 12 and 17 members of these groups, respectively. As these 17 cheilodactylids are not genetically or morphologically distinct from the latrids, it is proposed that the Latridae should be expanded to encompass them. The inferred relationships among those Cheilodactylus requiring generic reassignment were largely unresolved, and hence few recommendations can be made regarding their placement. Divergence time estimates indicate that chance oceanic dispersal subsequent to Gondwanan fragmentation best explains the Southern Hemisphere radiation of cheilodactylids.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although there are theoretical reasons to suspect that gametic incompatibility may develop readily among populations of broadcast spawning marine invertebrates, there have been very few studies documenting geographic patterns of interpopulation incompatibility for any species. To address this we determined how successfully individuals of the intertidal serpulid polychaete, Galeolaria caespitosa, can cross-fertilize within and among populations from across temperate Australia. Fertilization assays revealed asymmetrical differences between very distantly located populations from different coasts, with near-complete incompatibility between eggs from Sydney with sperm from Adelaide, but the reverse cross (Adelaide eggs, Sydney sperm) was reasonably compatible. Although that pattern was congruent with a clear difference in Cytochrome B sequences between worms on the south and east coasts of Australia, we also detected some indication of interpopulation incompatibility within the genetic grouping on east coast, between two populations separated by only 220 km. We then assessed whether commonly proposed gametic compatibility arms-races could account for these patterns. Our results suggest reduced gametic compatibility may reduce a female's maximum fertilization potential, resulting in a cost to this potential mechanism for reducing polyspermy. Consequently, the apparently rapid development of reproductive barriers here seems unlikely to have been driven by arms-races involving sexual conflict over fertilization rate.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on nearly complete (1125 bp) cytochrome-b sequence data and morphological characters, two new endemic species of Miniopterus are described from Madagascar that were previously identified as M. manavi. Using phylogenetic analysis, the basal nodes of major lineages in the Malagasy members of this genus are weakly supported, while, in most cases, the branches leading to each of the clades are well resolved. Miniopterus mahafaliensis, new species, occurs in the southwestern semidesert areas and M. brachytragos, new species, has a broad distribution across the northern half of the island, ranging across several different biomes. Phylogenetic inference indicates that these two new taxa are not closely related to M. manavi sensu stricto, with average genetic distances of 9.2% and 5.7% from this taxon, respectively. On the basis of this and previous revisions, the former M. manavi complex is now recognized to represent at least five taxa, which do not form a monophyletic group with respect to one another, and represent extraordinary examples of convergent evolution. Miniopterus brachytragos is closely related to the recently named M. aelleni, while M. mahafaliensis is not closely associated with any of these species. Molecular phylogenetic analysis was imperative to resolve the species limits of these taxa and morphology then provided the means to corroborate the recovered clades. There are localities on the island, specifically limestone karstic zones, where four species of the former M. manavi sensu lato complex occur in strict sympatry. These species often use the same day-roost caves and have similar external and craniodental measurements. This raises intriguing questions as to how these animals divide their worlds with regard to dietary regimes and foraging strategies, as well as their speciation history.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past decade, major advances have been made concerning the systematics and species diversity of Malagasy bats, largely based on specimens collected during inventories and associated morphological and molecular genetic studies. Herein we describe a new species of endemic bat from southern Madagascar, Miniopterus griffithsi sp. n., which is the sister taxa to Miniopterus gleni, a taxon described in 1995 (holotype from Sarodrano, just north of the Onilahy River in the southwest). Based on current information, M. griffithsi is found in the sub-arid bioclimatic zone, south of the Onilahy River, and M. gleni occurs in a variety of different bioclimatic zones, north of the Onilahy River to the northern portion of the island and on the near shore island of Ile Sainte Marie. The realization that M. griffithsi was a separate entity was first based on phylogeographic studies of the M. gleni complex. Comparisons using 397 bp of mitochondrial cytochrome b found a divergence of 1.2% within animals occurring across much of Madagascar north of the Onilahy River, 0.07% in those south of the Onilahy River, and 7.4% in populations separated by this river. Subsequently, morphological characters were identified that supported the specific separation of populations occurring south (M. griffithsi) and north of the Onilahy River (M. gleni), which include tragus shape, pelage coloration, and skull proportions.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on recent molecular phylogenetic studies, the Old World bat family Miniopteridae, composed of species in the genus Miniopterus, has been shown to contain complex paraphyletic species, many of which are cryptic based on convergent morphological characters. Herein we resolve the phylogenetic relationships and taxonomy of the species complex M. manavi on Madagascar and in the Comoro Archipelago, where these animals occur in different bioclimatic zones. First using mitochondrial cytochrome-b sequence data to define clades and then morphology to corroborate the molecular data, including comparisons to type specimens, we demonstrate that animals identified as this taxon are a minimum of three species: M. manavi sensu stricto occurs in at least the central portion of the Central Highlands; M. griveaudi has a broad distribution in lowland northern and central western Madagascar and the Comoros (Anjouan and Grande Comore), and M. aelleni sp. n. has been found in northern and western Madagascar and the Comoros (Anjouan). In each case, these three clades were genetically divergent and monophyletic and the taxa are diagnosable based on different external and craniodental characters. One aspect that helped to define the systematics of this group was isolation of DNA from one of the paratypes of M. manavi collected in 1896 and new topotypic material. Miniopterus manavi is most closely allied to a recently described species, M. petersoni. At several localities, M. griveaudi and M. aelleni have been found in strict sympatry, and together with M. manavi sensu stricto show considerable convergence in morphological characters, but are not immediate sister taxa. In defining and resolving the systematics of cryptic species, such as miniopterid bats, the process of defining clades with molecular tools, segregating the specimens accordingly, and identifying corroborative morphological characters has been notably efficient.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent molecular genetic work, combined with morphological comparisons, of Malagasy members of the bat genus Miniopterus (Family Miniopteridae), has revealed several cryptic species. Based on new specimens and associated tissues, we examine patterns of variation in the recently described species M. petersoni, the holotype of which comes from extreme southeastern Madagascar, and for which specimens from more northerly portions of eastern Madagascar were noted to show some morphological divergence from typical M. petersoni. On the basis of morphological and genetic (cytochrome b) characters we described a new species, M. egeri sp. nov. This taxon also shows bioacoustical differences from M. petersoni. Miniopterus egeri is widely distributed in the eastern portion of Madagascar across an elevational range from near sea level to 550 m. The specific status of moderately small Miniopterus from Montagne d'Ambre in the far north remains to be determined.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past decade has seen a proliferation of new species of Miniopterus bats (family Miniopteridae) recognized from Madagascar and the neighboring Comoros archipelago. The interspecific relationships of these taxa, their colonization history, and the evolution of this presumed adaptive radiation have not been sufficiently explored. Using the mitochondrial cytochrome-b gene, we present a phylogeny of the Malagasy members of this widespread Old World genus, based on 218 sequences, of which 82 are new and 136 derived from previous studies. Phylogenetic analyses recovered 18 clades, which divide into five primary lineages: (1) M. griveaudi; (2) M. mahafaliensis, M. sororculus and X3; (3) M. majori, M. gleni and M. griffithsi; (4) M. brachytragos; M. aelleniA, and M. aelleniB; and (5) M. manavi and M. petersoni recovered as sister species, which were in turn linked to a group comprising M. egeri and five genetically distinct populations referred to herein as P3, P4, P5, P6 and P7. Beast analysis indicated that the initial divergence within the Malagasy Miniopterus radiation took place 4.5 Myr; most species diverged between 4 and 2.5 Myr, and a secondary period was between 1.25 and 1 Myr. DNA K2P-distances between recognized taxa ranged from 12.9% to 2.5% and intraspecific variation was less than 1.8%. Of the 18 identified clades, Latin binomials are only associated with 11, which indicates much greater differentiation than currently recognized for Malagasy Miniopterus. These data are placed in a context of the dispersal history of this genus on the island and patterns of ecological diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2015 The Linnean Society of London. Although important advances have been made in recent years in the taxonomy of different families and subfamilies of Malagasy bats, those belonging to the Vespertilioninae remain partially unresolved. Herein using a mitochondrial marker (cytochrome b) as the point of departure for 76 specimens of Malagasy vespers and appropriate African taxa, we diagnose the six taxa of this subfamily on the island by overlaying different morphological and bioacoustic characters on the clade structure of sequenced animals. The species include: endemic Neoromicia matroka, which is sister to African N. capensis; endemics N. malagasyensis and N. robertsi, which form sister species; a member of the genus Hypsugo, which is sister to African H. anchietae and described herein as new to science; Pipistrellus hesperidus for which Madagascar animals are genetically close but distinct from African populations of the same species; and endemic P. raceyi, which shows segregation of eastern (mesic) and western (dry) populations and its sister species relationships are unresolved. While the external and craniodental measurements, as well as bioacoustic variables, allow only partial differentiation of these six species of Vespertilioninae, molecular characters provide definitive separation of the taxa, as do male bacular morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent molecular genetic work, combined with morphological comparisons, on Malagasy members of the bat genus Miniopterus (Family Miniopteridae), has uncovered a number of cryptic species. Based on recently collected specimens and associated tissues, we examine patterns of variation in M. aelleni, the holotype of which comes from Ankarana in northern Madagascar. Using molecular genetic (mitochondrial cytochrome b) and morphological characters we describe a new species, M. ambohitrensis sp. nov. In northern Madagascar, M. ambohitrensis and M. aelleni are allopatric, but occur in relatively close geographical contact (approximately 40 km direct line distance) with M. ambohitrensis found at Montagne d'Ambre in montane humid forest and M. aelleni sensu stricto at Ankarana in dry deciduous forest. Morphologically, this new taxon is differentiated from M. aelleni based on pelage coloration, external measurements, craniodental differences, and tragus shape. Comparisons using 725 bp of cytochrome b found a divergence of 1.1% within M. aelleni sensu stricto, 0.8% within M. ambohitrensis, and 3.3% between these two clades. The two sister species do not demonstrate acoustical differences based on recordings made in a flight cage. Miniopterus ambohitrensis is known from four localities in the northern and central portions of Madagascar, all from montane regions and across an elevational range from about 800 to 1600 m; its calculated "Extent of occurrence" is 15,143 km2. It is possible that this species is at least partially migratory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of antilopine wallaroo, Macropus antilopinus, is marked by a break in the species’ range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re-examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median-joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau–Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 (CYP2B6) is an important enzyme that metabolizes more than eight compounds and about 3.0% of therapeutic drugs. The genetic polymorphisms of CYP2B6 have earlier been studied in Caucasian, Japanese and Korean, but the data are lacking for Han Chinese. The aim of this study was to investigate the frequencies of allelic variants of CYP2B6 in healthy Han Chinese and compare with those in other ethnic groups reported in the literature. Polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) method was used to test the five common non-synonymous single nucleotide polymorphisms (SNPs) of CYP2B6 gene, namely, 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T in unrelated healthy Han Chinese (n = 193). The study demonstrated that the frequencies of 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T SNPs in Han Chinese were 0.03, 0.21, 0, 0.28 and 0.003, respectively. The frequencies of all five SNPs tested in female were higher than those in male, but the statistical difference was insignificant (P > 0.05). Compared to the data reported in the literature, the frequencies of common CYP2B6 allelic variants in Chinese are similar to those of other Asian populations including Japanese and Korean, but markedly different from those in Caucasians. These results indicate the presence of marked ethnic difference in CYP2B6 SNP frequencies between Chinese and Caucasian. Further studies are required to explore the impact of these SNPs of CYP2B6 gene on the clinical response (efficacy and toxicity) to drugs that are substrates for CYP2B6 in patients.<br />