10 resultados para Cytauxzoon felis

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecology and behaviour of a colony of feral cats was studied at a refuse dump at Anglesea, Victoria. Research found that the cats lived at the dump all year round, congregating on the exposed refuse at night. Here they fed mainly on meat scraps, supplementing their diet with local wildlife. Aggression between individual cats was rare, allowing them to live as a colony, rather than as solitary individuals. Although female cats were fecund, breeding success was low, preventing a steady increase in the population. No justification for controlling these cats could be found at this time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human infection with Rickettsia felis has been reported in most parts of the world, and R. felis has recently been confirmed in cat fleas in Western Australia. The clinical presentations of R. typhi and R. felis are similar, and in the past, the incidence of R. felis infection may have been underestimated. We describe the first reported cases of probable human R. felis infection in Australia. Two adults and three children in Victoria contracted a rickettsial disease after exposure to fleas from kittens. Molecular testing of fleas demonstrated the presence of R. felis but not R. typhi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feral cats are among the most damaging invasive species worldwide, and are implicated in many extinctions, especially in Australia, New Zealand and other islands. Understanding and reducing their impacts is a global conservation priority. We review knowledge about the impacts and management of feral cats in Australia, and identify priorities for research and management. In Australia, the most well understood and significant impact of feral cats is predation on threatened mammals. Other impacts include predation on other vertebrates, resource competition, and disease transmission, but knowledge of these impacts remains limited. Lethal control is the most common form of management, particularly via specifically designed poison baits. Non-lethal techniques include the management of fire, grazing, food, and trophic cascades. Managing interactions between these processes is key to success. Given limitations on the efficacy of feral cat management, conservation of threatened mammals has required the establishment of insurance populations on predator-free islands and in fenced mainland enclosures. Research and management priorities are to: prevent feral cats from driving threatened species to extinction; assess the efficacy of new management tools; trial options for control via ecosystem management; and increase the potential for native fauna to coexist with feral cats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators.

2. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus.

3. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn.

4. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk.

5. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations.

6. Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is global interest in restoring populations of apex predators, both to conserve them and to harness their ecological services. In Australia, reintroduction of dingoes (Canis dingo) has been proposed to help restore degraded rangelands. This proposal is based on theories and the results of studies suggesting that dingoes can suppress populations of prey (especially medium- and large-sized herbivores) and invasive predators such as red foxes (Vulpes vulpes) and feral cats (Felis catus) that prey on threatened native species. However, the idea of dingo reintroduction has met opposition, especially from scientists who query the dingo's positive effects for some species or in some environments. Here, we ask 'what is a feasible experimental design for assessing the role of dingoes in ecological restoration?' We outline and propose a dingo reintroduction experiment-one that draws upon the existing dingo-proof fence-and identify an area suitable for this (Sturt National Park, western New South Wales). Although challenging, this initiative would test whether dingoes can help restore Australia's rangeland biodiversity, and potentially provide proof-of-concept for apex predator reintroductions globally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of introduced predators to mitigate biodiversity impacts is a pressing conservation challenge. Across Australia feral cats (Felis catus) are a major threat to terrestrial biodiversity. Currently feral cat control is hindered by the limited utility of existing predator baiting methods. Further proposed control methods include use of the novel poison para-aminopropiophenone (PAPP) which may present a hazard to some native animal populations. Here we used experimental and predictive approaches to evaluate feral cat bait take by a large native Australian predatory reptile the Lace monitor (Varanus varius). These lizards would be expected to readily detect, ingest and consume a lethal dose (depending on toxin) from surface-laid baits intended for feral cat control if a precautionary approach was not adopted when baiting. We modelled V. varius bait take using experimental and predictive biophysical modelling approaches to evaluate temporal effects of climate variables on V. varius activity and hence potential for bait removal. Finally we conducted a pre-PAPP baiting site occupancy assessment of V. varius within Wilson Promontory National Park (WPNP) to provide a basis for monitoring any longer term population effects of cat baiting. V. varius removed 7 % of deployed baits from 73 % of bait stations across another study area in Far Eastern Victoria. Daily bait removal was positively correlated with maximum temperature and solar radiation. Biophysical modelling for Far Eastern Victoria predicted that maximum temperatures <19.5 °C prevented V. varius activity and hence opportunity for bait removal. V. varius in WPNP was undetectable suggesting aerial baiting posed limited hazard to this species at this location. Depending how climate influences annual activity patterns and the specific poison, surface-laid baits could pose a significant mortality risk to V. varius. However, use of biophysical models to predict periods of V. varius inactivity may provide a novel means to reduce non-target bait take by this predator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Reducing the impacts of feral cats (Felis catus) is a priority for conservation managers across the globe, and success in achieving this aim requires a detailed understanding of the species’ ecology across a broad spectrum of climatic and environmental conditions. We reviewed the diet of the feral cat across Australia and on Australian territorial islands, seeking to identify biogeographical patterns in dietary composition and diversity, and use the results to consider how feral cats may best be managed. Location Australia and its territorial islands. Methods Using 49 published and unpublished data sets, we modelled trophic diversity and the consumption of eight food groups against latitude, longitude, mean temperature, precipitation, environmental productivity and climate-habitat regions. Results We recorded 400 vertebrate species that feral cats feed on or kill in Australia, including 28 IUCN Red List species. We found evidence of continental- scale prey-switching from rabbits to small mammals, previously recorded only at the local scale. The consumption of arthropods, reptiles, rabbits, rodents and medium-sized native mammals varied with different combinations of latitude, longitude, mean annual precipitation, temperature and environmental productivity. The frequency of rodents and dasyurids in cats’ diets increased as rabbit consumption decreased. Main conclusions The feral cat is an opportunistic, generalist carnivore that consumes a diverse suite of vertebrate prey across Australia. It uses a facultative feeding strategy, feeding mainly on rabbits when they are available, but switching to other food groups when they are not. Control programmes aimed at culling rabbits could potentially decrease the availability of a preferred food source for cats and then lead to greater predation pressure on native mammals. The interplay between cat diet and prey species diversity at a continental scale is complex, and thus cat management is likely to be necessary and most effective at the local landscape level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary The feral Cat (Felis catus) is a significant threat to Australian fauna, and reducing their impacts is considered an essential action for threatened species conservation. Poison baiting is increasingly being used for the broad scale control of feral cats. In this study, we measured the population response of feral cats to a track-based baiting programme using Eradicat baits in the semi-arid northern wheatbelt region of Western Australia. Over two years, 1500 baits were laid once annually and the response of feral cats was measured using remote cameras in a before–after, control–impact design. There was a significant reduction in feral cat activity in the second year, but not the first. During bait uptake trials, corvids removed the most number of baits, followed by cats and varanids. The lack of a response to baiting in the first year may be due to existing low cat numbers in the baited area and/or the timing of the baiting. We provide a list of key recommendations to help inform future cat baiting programmes and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. The diet of sympatric dingoes and feral cats was studied in the semiarid southern rangelands of Western Australia. A total of 163 scats were collected over a period of 19 months. Rabbit remains were the most common food item in cat scats, followed by reptiles, small mammals and birds. Macropod remains were the most common food item in dingo scats, followed by rabbits and birds. Dingo scats did not contain small mammal remains, and infrequently contained arthropod and reptile remains. Cat and dingo scats contained remains from 11 and six mammal species, respectively. Of the small mammals, cat scats contained rodent remains more frequently than those of dasyurids. Dietary diversity of cats was higher than for dingoes and dietary overlap between the two species was relatively low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feral cats (Felis catus) have a wide global distribution and cause significant damage to native fauna. Reducing their impacts requires an understanding of how they use habitat and which parts of the landscape should be the focus of management. We reviewed 27 experimental and observational studies conducted around the world over the last 35 years that aimed to examine habitat use by feral and unowned cats. Our aims were to: (1) summarise the current body of literature on habitat use by feral and unowned cats in the context of applicable ecological theory (i.e. habitat selection, foraging theory); (2) develop testable hypotheses to help fill important knowledge gaps in the current body of knowledge on this topic; and (3) build a conceptual framework that will guide the activities of researchers and managers in reducing feral cat impacts. We found that feral cats exploit a diverse range of habitats including arid deserts, shrublands and grasslands, fragmented agricultural landscapes, urban areas, glacial valleys, equatorial to sub-Antarctic islands and a range of forest and woodland types. Factors invoked to explain habitat use by cats included prey availability, predation/competition, shelter availability and human resource subsidies, but the strength of evidence used to support these assertions was low, with most studies being observational or correlative.Wetherefore provide a list of key directions that will assist conservation managers and researchers in better understanding and ameliorating the impact of feral cats at a scale appropriate for useful management and research. Future studies will benefit from employing an experimental approach and collecting data on the relative abundance and activity of prey and other predators. This might include landscape-scale experiments where the densities of predators, prey or competitors are manipulated and then the response in cat habitat use is measured. Effective management of feral cat populations could target high-use areas, such as linear features and structurally complex habitat. Since our review shows often-divergent outcomes in the use of the same habitat components and vegetation types worldwide, local knowledge and active monitoring of management actions is essential when deciding on control programs.