44 resultados para CITOLOGIA HORMONAL

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper deficiency during pregnancy results in early embryonic death and foetal structural abnormalities including skeletal, pulmonary and cardiovascular defects. During pregnancy, copper is transported from the maternal circulation to the foetus by mechanisms which have not been clearly elucidated. Two coppertransporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND), are expressed in the placenta and both are involved in placental copper transport, as copper accumulates in the placenta in both Menkes and Wilson disease. The regulatory mechanisms of MNKand WNDand their exact role in the placenta are unknown. Using a differentiated polarized Jeg-3 cell culture model of placental trophoblasts, MNK and WND were shown to be expressed within these cells. Distinct roles forMNKandWND are suggested on the basis of their opposing responses to insulin. Insulin and oestrogen increased both MNK mRNA and protein levels, altered the localization of MNK towards the basolateral membrane in a copper-independent manner, and increased the transport of copper across this membrane. In contrast, levels of WND were decreased in response to insulin, and the protein was located in a tight perinuclear region, with a corresponding decrease in copper efflux across the apical membrane. These results are consistent with a model of copper transport in the placenta in which MNK delivers copper to the foetus and WND returns excess copper to the maternal circulation. Insulin and oestrogen stimulate copper transport to the foetus by increasing the expression of MNK and reducing the expression of WND. These data show for the first time that MNK and WND are differentially regulated by the hormones insulin and oestrogen in human placental cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details 13 novel hormone compounds, designed and synthesised for the purpose of aiding the detection and treatment of breast and prostate cancers. Cellular and electromechanical studies of 3 of these synthesised hormones indicate a potential for human application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surviving prolonged fasting implies closely regulated alterations in fuel provisioning to meet metabolic requirements, while preserving homeostasis. Little is known, however, of the endocrine regulations governing such metabolic adaptations in naturally fasting free-ranging animals. The hormonal responses to natural prolonged fasting and how they correlate to the metabolic adaptations observed, were investigated in subantarctic fur seal (Arctocephalus tropicalis) pups, which, because of the intermittent pattern of maternal attendance, repeatedly endure exceptionally long fasting episodes throughout their development (1–3 mo). Phase I fasting was characterized by a dramatic decrease in plasma insulin, glucagon, leptin, and total L-thyroxine (T4) associated with reductions in mass-specific resting metabolic rate (RMR), plasma triglycerides, glycerol, and urea-to-creatine ratio, while nonesterified fatty acids (NEFA) and β-OHB increased. In contrast, the metabolic steady-state of phase II fasting reached within 6 days was associated with minimal concentrations of insulin, glucagon, and leptin; unchanged cortisol and triiodothyronine (T3); and moderately increased T4. The early fall in insulin and leptin may mediate the shift to the strategy of energy conservation, protein sparing, and primary reliance on body lipids observed in response to the cessation of feeding. In contrast to the typical mammalian starvation response, nonelevated cortisol and minimal glucagon levels may contribute to body protein preservation and downregulation of catabolic pathways, in general. Furthermore, thyroid hormones may be involved in a process of energy conservation, independent of pups' nutritional state. These original hormonal settings might reflect an adaptation to the otariid repeated fasting pattern and emphasize the crucial importance of a tight physiological control over metabolism to survive extreme energetic constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Sprint exercise and hypoxic stimulus during exercise are potent factors affecting hormonal and metabolic responses. However, the effects of different hypoxic levels on hormonal and metabolic responses during sprint exercise are not known. Here, we examined the effect of different hypoxic conditions on hormonal and metabolic responses during sprint exercise. DESIGN: Seven male subjects participated in three experimental trials: 1) sprint exercise under normoxia (NSE); 2) sprint exercise under moderate normobaric hypoxia (16.4% oxygen) (HSE 16.4); and 3) sprint exercise under severe normobaric hypoxia (13.6% oxygen) (HSE 13.6). The sprint exercise consisted of four 30s all-out cycling bouts with 4-min rest between bouts. Glucose, free fatty acids (FFA), blood lactate, growth hormone (GH), epinephrine (E), norepinephrine (NE), and insulin concentrations in the HSE trials were measured before exposure to hypoxia (pre 1), 15 min after exposure to hypoxia (pre 2), and at 0, 15, 30, 60, 120, and 180 min after the exercise performed in hypoxia. The blood samples in the NSE trial were obtained in normoxia at the same time points as the HSE trials. RESULTS: Circulating levels of glucose, FFA, lactate, GH, E, NE, and insulin significantly increased after all three exercise trials (P < 0.05). The area under the curve (AUC) for GH was significantly higher in the HSE 13.6 trial than in the NSE and HSE 16.4 trials (P < 0.05). A maximal increase in FFA concentration was observed at 180 min after exercise and was not different between trials. CONCLUSION: These findings suggest that severe hypoxia may be an important factor for the enhancement of GH response to all-out sprint exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adversity early in life can disrupt the functioning of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes and increase risk for negative health outcomes. The interplay between these axes and the environment is complex, and understanding needs to be advanced by the investigation of the multiple hormonal relationships underlying these processes. The current study examined basal hormonal associations between morning levels of cortisol, testosterone, and dehydroepiandrosterone in a cohort of adolescents (mean age 15.56 years). The moderating influence of childhood adversity was also examined, as indexed by self-reported trauma (at mean age 14.91), and observed maternal aggressive parenting (at mean age 12.41). Between-person regressions revealed significant associations between hormones that were moderated by both measures of adversity. In females, all hormones positively covaried, but also interacted with adversity, such that positive covariation was typically only present when levels of trauma and/or aggressive parenting were low. In males, hormonal associations and interactions were less evident; however, interactions were detected for cortisol-testosterone - positively covarying at high levels of aggressive parenting but negatively covarying at low levels - and DHEA-cortisol - similarly positively covarying at high levels of parental aggression. These results demonstrate associations between adrenal and gonadal hormones and the moderating role of adversity, which is likely driven by feedback mechanisms, or cross-talk, between the axes. These findings suggest that hormonal changes may be the pathway through which early life adversity alters physiology and increases health risks, but does so differentially in the sexes; however further study is necessary to establish causation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The thesis investigated the role of maternal mental health, maternal attachment and hormones in the development of maternal-fetal attachment during pregnancy. The study found that oxytocin and cortisol were associated with maternal-fetal attachment throughout pregnancy. The study also found that maternal mental health, particularly anxiety, stress and depression during the prenatal period impacted on the development of maternal-fetal attachment across pregnancy. The findings have clinical and research implications with regard to early intervention for attachment and maternal well-being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrine regulation of milk protein gene expression in marsupials and eutherians is well studied. However, the evolution of this complex regulation that began with monotremes is unknown. Monotremes represent the oldest lineage of extant mammals and the endocrine regulation of lactation in these mammals has not been investigated. Here we characterised the proximal promoter and hormonal regulation of two platypus milk protein genes, Beta-lactoglobulin (BLG), a whey protein and monotreme lactation protein (MLP), a monotreme specific milk protein, using in vitro reporter assays and a bovine mammary epithelial cell line (BME-UV1). Insulin and dexamethasone alone provided partial induction of MLP, while the combination of insulin, dexamethasone and prolactin was required for maximal induction. Partial induction of BLG was achieved by insulin, dexamethasone and prolactin alone, with maximal induction using all three hormones. Platypus MLP and BLG core promoter regions comprised transcription factor binding sites (e.g. STAT5, NF-1 and C/EBPα) that were conserved in marsupial and eutherian lineages that regulate caseins and whey protein gene expression. Our analysis suggests that insulin, dexamethasone and/or prolactin alone can regulate the platypus MLP and BLG gene expression, unlike those of therian lineage. The induction of platypus milk protein genes by lactogenic hormones suggests they originated before the divergence of marsupial and eutherians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Female athletes are generally considered to be at Iow risk of osteoporosis because of the skeletal loading associated with sports participation. Sites that are exposed to long-term high-impact loading are consistently reported to be higher than the same sites in their sedentary peers. However, weight-bearing exercise does not always ensure that athletes will have high bone-mineral density, as the hormonal environment, dietary factors, and loading history all influence bone-mineral density, In particular, menstrual dysfunction, which can occur with intense training or disordered eating, is a significant risk factor for Iow bone-mineral density. Exercise history before menstrual dysfunction is likely to offer some protection for Iow bone-mineral density, particularly at the hip, Resumption of menses is unlikely to restore bone-mineral density to levels reported in eumenorrheic athletes or even sedentary peers, Athletes at risk of amenorrhea should be identified and their training loads and energy intakes monitored to ensure normal menstrual function, Athletes who remain amenorrheic should be counseled about the possible negative effects of amenorrhea and monitored for bone loss. Early intervention is recommended for amenorrheic athletes with Iow bone-mineral density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fasting triggers a complex array of adaptive metabolic and hormonal responses including an augmentation in the capacity for mitochondrial fatty acid (FA) oxidation in skeletal muscle. This study hypothesized that this adaptive response is mediated by increased mRNA of key genes central to the regulation of fat oxidation in human skeletal muscle. Fasting dramatically increased UCP3 gene expression, by 5-fold at 15 h and 10-fold at 40 h. However the expression of key genes responsible for the uptake, transport, oxidation, and re-esterification of FA remained unchanged following 15 and 40 h of fasting. Likewise there was no change in the mRNA abundance of transcription factors. This suggests a unique role for UCP3 in the regulation of FA homeostasis during fasting as adaptation to 40 h of fasting does not require alterations in the expression of other genes necessary for lipid metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the many different variations that can occur in human sexual formation, transsexualism no doubt remains the least understood by the wider Australian community. As a consequence, the process of attaining human rights to legal status, privacy, dignity and freedom from discrimination for those who experience this unusual condition has been a slow and sometimes frustrating one. The article seeks to introduce the reader to some of the more recent developments in the international jurisprudence of transsexualism and the underlying medical evidence that has supported them. It also offers criticism of the belated attempt by the State of Victoria,  with the Births, Deaths & Marriages Registration (Amendment) Act 2004, to establish certain statutory rights in this regard. While the legislation was enacted with the stated and very laudable purpose of providing for the  correction of birth records on the Register of Births of those people with transsexualism who have altered their phenotypic sex by hormonal  medication and surgery, the article argues it has also served to remove other equally important rights already won and proposes that a final remedy will only be found, as on previous occasions, in the courts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim was to investigate whether the addition of supervised high intensity progressive resistance training to a moderate weight loss program (RT+WLoss) could maintain bone mineral density (BMD) and lean mass compared to moderate weight loss (WLoss) alone in older overweight adults with type 2 diabetes. We also investigated whether any benefits derived from a supervised RT program could be sustained through an additional home-based program. This was a 12-month trial in which 36 sedentary, overweight adults aged 60 to 80 years with type 2 diabetes were randomized to either a supervised gymnasium-based RT+WLoss or WLoss program for 6 months (phase 1). Thereafter, all participants completed an additional 6-month home-based training without further dietary modification (phase 2). Total body and regional BMD and bone mineral content (BMC), fat mass (FM) and lean mass (LM) were assessed by DXA every 6 months. Diet, muscle strength (1-RM) and serum total testosterone, estradiol, SHBG, insulin and IGF-1 were measured every 3 months. No between group differences were detected for changes in any of the hormonal parameters at any measurement point. In phase 1, after 6 months of gymnasium-based training, weight and FM decreased similarly in both groups (P<0.01), but LM tended to increase in the RT+WLoss (n=16) relative to the WLoss (n=13) group [net difference (95% CI), 1.8% (0.2, 3.5), P<0.05]. Total body BMD and BMC remained unchanged in the RT+WLoss group, but decreased by 0.9 and 1.5%, respectively, in the WLoss group (interaction, P<0.05). Similar, though non-significant, changes were detected at the femoral neck and lumbar spine (L2-L4). In phase 2, after a further 6 months of home-based training, weight and FM increased significantly in both the RT+WLoss (n=14) and WLoss (n=12) group, but there were no significant changes in LM or total body or regional BMD or BMC in either group from 6 to 12 months. These results indicate that in older, overweight adults with type 2 diabetes, dietary modification should be combined with progressive resistance training to optimize the effects on body composition without having a negative effect on bone health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of hormonal status and activity levels on Achilles tendon structure were examined in asymptomatic post-menopausal women. It was hypothesized that women using hormone replacement therapy (HRT) would have better tendon structure than those not using HRT and that active women would have poorer tendon structure than inactive women. Eighty-five women including 53 active women (regular golf players) and 32 controls (healthy but inactive women) recorded their HRT and menopausal history and underwent basic anthropometric measurements. Women were divided into two groups based on their hormonal status: those currently using HRT; and those who had never used HRT or ceased using HRT at least 12 months prior to the study. Achilles tendons were examined with ultrasound and categorized as normal or abnormal, and the diameter of each tendon (mm) was recorded. Active women had a greater prevalence of tendon abnormality ( P=0.10) and thicker Achilles tendons than inactive women ( P<0.05). Active women on HRT had less tendon abnormality ( P=0.056) than active women not on HRT and significantly less tendon thickness ( P<0.05). This study indicates that Achilles tendon diameter is greater in active post-menopausal women. Hormone replacement therapy appeared to ameliorate this effect in active women. A similar effect from HRT on the Achilles tendons of inactive women was not apparent.