15 resultados para Atrioventricular node, Ion channels, Gap junctions, Arrhythmias

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K+, Na+ and Cl-. It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are epithelial Na+ channels gated by external H+. Recently, it has been demonstrated that ASICs play a role in Na+ uptake in freshwater rainbow trout. The current paper investigated the potential involvement of ASICs in Na+ transport in another freshwater fish species, the zebrafish (Danio rerio). Using molecular and histological techniques we found that asic genes and the ASIC4.2 protein are expressed in the gill of adult zebrafish. Immunohistochemistry revealed that mitochondrion-rich cells positive for ASIC4.2 do not co-localize with Na+/K+-ATPase (NKA)-rich cells, but co-localize with cells expressing vacuolar-type H+-ATPase (VHA). Furthermore, pharmacological inhibitors of ASIC and Na+/H+-exchanger (NHEs) significantly reduced uptake of Na+ in adult zebrafish exposed to low Na+ media, but did not cause the same response in individuals exposed to ultra-low Na+ water. Our results suggest that in adult zebrafish ASICs play a role in branchial Na+ uptake in media with low Na+ concentrations and that mechanisms used for Na+ uptake by zebrafish may depend on the Na+ concentration in the acclimation media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stomatin, originally identified as a major protein of the human erythrocyte membrane, is widely expressed in various tissues. Orthologues are found in vertebrates, invertebrates, plants, and microorganisms. Related proteins exhibit a common core structure, termed the prohibitin (PHB) domain, with varying extensions. Stomatin has an unusual topology, similar to caveolin-1, with a hydrophobic domain embedded at the cytoplasmic side of the membrane. Additional anchoring is provided by palmitoylation and the membrane affinity of the PHB domain. Stomatin associates with cholesterol-rich microdomains (lipid rafts), forms oligomers, and thereby displays a scaffolding function by generating large protein-lipid complexes. It regulates the activity of various membrane proteins by reversibly recruiting them to lipid rafts. This mechanism of regulation has been shown for GLUT-1 and may also apply for ion channels. Stomatin is located at the plasma membrane, particularly in microvilli, in endocytic and exocytic vesicles, and cytoplasmic granules. Stomatin-carrying endosomes are highly dynamic and interact with lipid droplets suggesting a role in intracellular lipid transport. This subcellular distribution and the caveolin-like protein structure suggest important membrane organizing functions for stomatin. A general picture emerges now that cell membranes contain cholesterol-rich domains that are generated and regulated by scaffolding proteins like caveolins, stomatins, and flotillin/reggie proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background – Satiation and satiety describe the events which lead to meal termination and the maintenance of hunger induced by physical and metabolic events following food ingestion. Fatty acids, components of dietary fat (triglyceride) may be important, if not essential components of satiation and satiety. Emerging evidence suggests fatty acid now constitutes a sixth taste modality and orally sensed fatty acids mediate unique cephalic and hormonal responses priming the body for fat digestion, and may contribute to sensory specific satiety. Once ingested, fatty acids are sensed in the gastrointestinal tract (GIT) where they cause the release of hormones, stimulate the vagus and enter the blood stream where they act a number of organs (brain, liver) to influence satiety.
Objective – To review the role of fatty acids in sensory and metabolic satiation and satiety.
Design – Literature search and review of papers from the past decade on satiety, satiation, fat taste and fatty acids.
Outcomes – The physiological significance of gustatory fat detection is still unclear, but it may signal the nutritious content of fat similar to the tastes of sweet or umami which signal the presence of carbohydrate or proteins. Like other tastants, fatty acid taste sensitivity is thought to vary in the population and differences in sensitivity may influence dietary choice and fat intake. Fatty acid taste may contribute to sensory specific satiety as foods are eaten. Animal models have observed an inverse relationship between oral fatty acid sensitivity and fat consumption, which leads to obesity. Observations that the obese have heightened preferences for, and consume more fat than lean individuals questions whether such a relationship may also be apparent in humans. At the GIT, fatty acids are sensed by enterocytes and bind to receptors, transporters or ion channels where they initiate gut-brain communication over nutrient status through the vagus and cause the release of satiety hormones which lead to meal termination. Inefficient fatty acid sensing at either or both locations is thought to accompany the aetiology of obesity.
Conclusion Variations in sensitivity to fatty acids may alter preferences and consumption of fats or hormonal responses to fat ingestion which influence sensory-specific, metabolic and subjective satiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish must maintain their internal ionic concentration. This occurs through co-ordination of cellular ion channels and transporters, and hormones acting on and within the cells of the gill, kidney, intestine, and, in some species, unique organs. This study measured some of these transporters and hormones in unusual species of the Australasian region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendon pain remains an enigma. Many clinical features are consistent with tissue disruption—the pain is localised, persistent and specifically associated with tendon loading, whereas others are not—investigations do not always match symptoms and painless tendons can be catastrophically degenerated. As such, the question ‘what causes a tendon to be painful?’ remains unanswered. 

Without a proper understanding of the mechanism behind tendon pain, it is no surprise that treatments are often ineffective. Tendon pain certainly serves to protect the area—this is a defining characteristic of pain—and there is often a plausible nociceptive contributor. However, the problem of tendon pain is that the relation between pain and evidence of tissue disruption is variable. The investigation into mechanisms for tendon pain should extend beyond local tissue changes and include peripheral and central mechanisms of nociception modulation


This review integrates recent discoveries in diverse fields such as histology, physiology and neuroscience with clinical insight to present a current state of the art in tendon pain. New hypotheses for this condition are proposed, which focus on the potential role of tenocytes, mechanosensitive and chemosensitive receptors, the role of ion channels in nociception and pain and central mechanisms associated with load and threat monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cone snail venoms are a rich source of peptides, many of which are potent and selective modulators of ion channels and receptors. Here we report the isolation and characterization of two novel conotoxins from the venom of Conus imperialis. These two toxins contain a novel cysteine framework, C-C-C-CC-C, which has not been found in other conotoxins described to date. We name it framework XXIII and designate the two toxins im23a and im23b; cDNAs of these toxins exhibit a novel signal peptide sequence, which defines a new K-superfamily. The disulfide connectivity of im23a has been mapped by chemical mapping of partially reduced intermediates and by NMR structure calculations, both of which establish a I-II, III-IV, V-VI pattern of disulfide bridges. This pattern was also confirmed by synthesis of im23a with orthogonal protection of individual cysteine residues. The solution structure of im23a reveals that im23a adopts a novel helical hairpin fold. A cluster of acidic residues on the surface of the molecule is able to bind calcium. The biological activity of the native and recombinant peptides was tested by injection into mice intracranially and intravenously to assess the effects on the central and peripheral nervous systems, respectively. Intracranial injection of im23a or im23b into mice induced excitatory symptoms; however, the biological target of these new toxins has yet to be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intercellular signalling has been identified as a highly complex process, responsible for orchestrating many physiological functions. While conventional methods of investigation have been useful, their limitations are impeding further development. Microfluidics offers an opportunity to overcome some of these limitations. Most notably, microfluidic systems can emulate the in-vivo environments. Further, they enable exceptionally precise control of the microenvironment, allowing complex mechanisms to be selectively isolated and studied in detail. There has thus been a growing adoption of microfluidic platforms for investigation of cell signalling mechanisms. This review provides an overview of the different signalling mechanisms and discusses the methods used to study them, with a focus on the microfluidic devices developed for this purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein calcium sensors of the Homer family have been proposed to modulate the activity of various ion channels and nuclear factor of activated T cells (NFAT), the transcription factor modulating skeletal muscle differentiation. We monitored Homer expression and subcellular localization in human skeletal muscle biopsies following 60 d of bedrest [Second Berlin Bedrest Study (BBR2-2)]. Soleus (SOL) and vastus lateralis (VL) biopsies were taken at start (pre) and at end (end) of bedrest from healthy male volunteers of a control group without exercise (CTR; n=9), a resistive-only exercise group (RE; n=7), and a combined resistive/vibration exercise group (RVE; n=7). Confocal analysis showed Homer immunoreactivity at the postsynaptic microdomain of the neuromuscular junction (NMJ) at bedrest start. After bedrest, Homer immunoreactivity decreased (CTR), remained unchanged (RE), or increased (RVE) at the NMJ. Homer2 mRNA and protein were differently regulated in a muscle-specific way. Activated NFATc1 translocates from cytoplasm to nucleus; increased amounts of NFATc1-immunopositive slow-type myonuclei were found in RVE myofibers of both muscles. Pulldown assays identified NFATc1 and Homer as molecular partners in skeletal muscle. A direct motor nerve control of Homer2 was confirmed in rat NMJs by in vivo denervation. Homer2 is localized at the NMJ and is part of the calcineurin-NFATc1 signaling pathway. RVE has additional benefit over RE as countermeasure preventing disuse-induced neuromuscular maladaptation during bedrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it's in-built supply of Li(+)-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10(-7) to 10(-3) Ω(-1) cm(-1)) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80-100 °C, from a dual Li(+) and H(+) (<100 °C) to a pure Li(+) conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of defects in hexagonal and cubic boron nitride (h -BN and c -BN, respectively) under low-energy argon or nitrogen ion-bombardment has been studied by near-edge x-ray absorption fine structure (NEXAFS) around boron and nitrogen K -edges. Breaking of B-N bonds for both argon and nitrogen bombardment and formation of nitrogen vacancies, VN, has been identified from the B K -edge of both h -BN and c -BN, followed by the formation of molecular nitrogen, N2, at interstitial positions. The presence of N 2 produces an additional peak in photoemission spectra around N 1s core level and a sharp resonance in the low-resolution NEXAFS spectra around N K -edge, showing the characteristic vibrational fine structure in high-resolution measurements. In addition, several new peaks within the energy gap of BN, identified by NEXAFS around B and N K -edges, have been assigned to boron or nitrogen interstitials, in good agreement with theoretical predictions. Ion bombardment destroys the cubic phase of c -BN and produces a phase similar to a damaged hexagonal phase. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we integrate two blind source separation (BSS) methods to estimate the individual channel state information (CSI) for the source-relay and relay-destination links of three-node two-hop multiple-input multiple-output (MIMO) relay systems. In particular, we propose a first-order Z-domain precoding technique for the blind estimation of the relay-destination channel matrix, while an algorithm based on the constant modulus and mutual information properties is developed to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, our algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm. © 2014 IEEE.